Unlabelled: This study utilized deep learning to classify osteoporosis and predict bone density using opportunistic CT scans and independently tested the models on data from different hospitals and equipment. Results showed high accuracy and strong correlation with QCT results, showing promise for expanding osteoporosis screening and reducing unnecessary radiation and costs.
Purpose: To explore the feasibility of using deep learning to establish a model for osteoporosis classification and bone density value prediction based on opportunistic CT scans and to verify its generalization and diagnostic ability using an independent test set.
Purpose: To establish machine learning(ML) models for the diagnosis of clinically significant prostate cancer (csPC) using multiparameter magnetic resonance imaging (mpMRI), texture analysis (TA), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) quantitative analysis and clinical parameters and to evaluate the stability of these models in internal and temporal validation.
Methods: The dataset of 194 men was split into training (n = 135) and internal validation (n = 59) cohorts, and a temporal dataset (n = 58) was used for evaluation. The lesions with Gleason score ≥ 7 were defined as csPC.