Ultrasonic-guided waves (UGWs) in defective pipes are subject to severe coherent noise caused by imperfect detection conditions, mode conversion, and intrinsic characteristics (dispersion and multiple modes), inducing the limited performance of anomaly imaging. To achieve the high resolution and accuracy of anomaly imaging, a multi-strategy hybrid sparse reconstruction (MHSR) method based on spatial-temporal sparse wavenumber analysis (ST-SWA) is proposed. MHSR leverages the capability of ST-SWA to extract the wavenumber dispersion curves, thereby providing a more refined and precise search space for MHSR.
View Article and Find Full Text PDFRationale And Objectives: To explore and validate the clinical value of ultrasound (US) viscosity imaging in differentiating breast lesions by combining with BI-RADS, and then comparing the diagnostic performances with BI-RADS alone.
Materials And Methods: This multicenter, prospective study enrolled participants with breast lesions from June 2021 to November 2022. A development cohort (DC) and validation cohort (VC) were established.
Ultrasonic guided waves (UGWs) in water-filled pipes are subject to more severe dispersion and attenuation than vacant pipes, posing significant challenges for defect identification and localization. To this end, a novel sparse signal decomposition method called orthogonal matching pursuit based on dispersion and multi-mode (DMOMP) was proposed, which utilizes the second-order asymptotic solution of dispersion curves and the conversion characteristics of asymmetric UGWs in the defect contact stage to reconstruct the dispersive signals and converts the time-domain dispersive signals to distance-domain non-dispersive signals by dispersion compensated time-distance mapping. The synthesized simulation results indicate that DMOMP not only exhibits higher reconstruction accuracy compared to OMP, but also reveals more accurate and stable mode recognition and localization compared to DOMP, which only considers the dispersion under perturbation and noise.
View Article and Find Full Text PDFVerticillium wilt is a disastrous disease caused by that severely damages the production of cotton in China. Even under homogeneous conditions, the same cotton cultivar facing tends to either stay healthy or become seriously ill and die. This binary outcome may be related to the interactions between microbiome assembly and plant health.
View Article and Find Full Text PDFWith the promotion and popularization of machine cotton-picking, more and more attention has been paid to the selection of early-maturity varieties with compact plant architecture. The type of fruit branch is one of the most important factors affecting plant architecture and early maturity of cotton. Heredity analysis of the cotton fruit branch is beneficial to the breeding of machine-picked cotton.
View Article and Find Full Text PDFThe two new world tetraploid cottons, Gossypium hirsutum and Gossypium barbadense, are cultivated worldwide and are characterised by a high yield and superior fibre quality, respectively. Historical genetic introgression has been reported between them; however, the existence of introgression and its genetic effects on agronomic traits remain unclear with regard to independent breeding of G. hirsutum (Upland cotton) and G.
View Article and Find Full Text PDFIn order to improve the interfacial properties of graphene oxide (GO) and epoxy resin (EP), hyperbranched polyesters with terminal carboxyl (HBP) non-covalently functionalized graphene oxide (HBP-GO) was achieved by strong π-π coupling between hyperbranched polyesters and GO nanosheets. The effects of non-covalent functionalization of GO on the dispersibility, wettability and interfacial properties were analyzed. The mechanical properties and enhancement mechanism of HBP-GO/EP composites were investigated.
View Article and Find Full Text PDF