Purpose: Prolonged exposure of cancer cells to triapine, an inhibitor of ribonucleotide reductase, followed by gemcitabine enhances gemcitabine activity in vitro. Fixed-dose-rate gemcitabine (FDR-G) has improved efficacy compared to standard-dose. We conducted a phase I trial to determine the maximum tolerated dose (MTD), safety, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary efficacy of prolonged triapine infusion followed by FDR-G.
View Article and Find Full Text PDFPurpose: Triapine, a novel inhibitor of the M2 subunit of ribonucleotide reductase (RR), is a potent radiosensitizer. This phase 1 study, sponsored by the National Cancer Institute Cancer Therapy Evaluation Program, assessed the safety and tolerability of triapine in combination with radiation (RT) in patients with locally advanced pancreas cancer (LAPCA).
Methods And Materials: We evaluated 3 dosage levels of triapine (24 mg/m2, 48 mg/m2, 72 mg/m2) administered with 50.
Background: Persistence of γ-H2AX after ionizing radiation (IR) or drug therapy is a robust reporter of unrepaired DNA double strand breaks in treated cells.
Methods: DU-145 prostate cancer cells were treated with a chemical library ±IR and assayed for persistence of γ-H2AX using an automated 96-well immunocytochemistry assay at 4 hours after treatment. Hits that resulted in persistence of γ-H2AX foci were tested for effects on cell survival.
Cancer Genomics Proteomics
October 2008
Background: The expression and activity of ribonucleotide reductase (RR) has been associated with resistance to multiple drugs in human cancer. The use of antisense oligonucleotide drug, GTI-2040, a 20-mer phosphorothioate oligonucleotide complemented to the human RR M2 subunit mRNA, represents an effective strategy for inhibiting RR. The increased specificity due to the anti-resistance effect of GTI-2040 may also lead to a more favorable therapeutic outcome.
View Article and Find Full Text PDFWorld J Gastroenterol
September 2005
Aim: To describe the significant over-expression of fibroblast growth factor receptor 3 (FGFR3), which is a signal transduction and cell proliferation related gene in hepatocellular carcinoma (HCC).
Methods: Following DNA microarray, Northern blot and quantitative real-time PCR were employed to confirm FGFR3 expression difference in HCC tissues and surrounding non-neoplastic liver tissue. FGFR3 expression levels were further determined by immunohistochemical study in 43 cases of HCC.