Publications by authors named "Bing-Rui Wu"

Purpose: Sialic acid-bound immunoglobulin-like lectin 15 (Siglec15) has emerged as a novel therapeutic target in tumor immunotherapy. This study is designed to investigate the function and mechanism of Siglec15 in thyroid carcinoma (THCA).

Materials And Methods: The information on patients with THCA from TGCA and GEO database were used to analyze the expression of Siglec15 in THCA.

View Article and Find Full Text PDF

Sialic acid-binding immunoglobulin-like lectin-15 (Siglec-15) has been identified as a novel potential target for cancer immunotherapy. Here, we explored the role of Siglec-15 in human hepatoma cells. In this study, we found that the expression of Siglec-15 is substantially upregulated in liver cancer tissues in comparison with the nontumor tissues.

View Article and Find Full Text PDF

Light extraction of GaN-based light-emitting diodes grown on Si(111) substrate (GaN-on-Si based LEDs) is presented in this study. Three different designs of GaN-on-Si based LEDs with the lateral structure, lateral structure on mirror/Si(100) substrate, and vertical structure on mirror/Si(100) substrate were epitaxially grown by metalorganic chemical vapor deposition and fabricated using chemical lift-off and double-transfer techniques. Current-voltage, light output power, far-field radiation patterns, and electroluminescence characteristics of these three LEDs were discussed.

View Article and Find Full Text PDF

This study evaluates the effect of crystallinity and point defects on time-dependent photoresponsivity and the cathodoluminescence (CL) properties of β-Ga₂O₃ epilayers. A synchrotron high-resolution X-ray technique was used to understand the crystalline structure of samples. Rutherford backscattering spectroscopy was used to determine the net chemical composition of the samples to examine the type and ratio of their possible point defects.

View Article and Find Full Text PDF

High-brightness p-side up AlGaInP-based red light emitting diodes (LEDs) with dot-patterned GaAs contact layer and surface rough structure are presented in this article. Initial LED structure of p-GaP/AlGaInP/GaAs is epitaxially grown using metal organic chemical vapor deposition technique. Using novel twice transferring process, the p-GaP layer is remained at the top side as both the current spreading and-window layer.

View Article and Find Full Text PDF