Cumulative studies have utilized high-throughput sequencing of the 16SrRNA gene to characterize the composition and structure of the microbiota in autism spectrum disorder (ASD). However, they do not always obtain consistent results; thus, conducting cross-study comparisons is necessary. This study sought to analyze the alteration of fecal microbiota and the diagnostic capabilities of gut microbiota biomarkers in individuals with ASD using the existing 16SrRNA microbial data and explore heterogeneity among studies.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) play important roles during the initiation and progression of cancer. We identified DiGeorge Syndrome Critical Region Gene 5 (DGCR5) as a clear cell renal cell carcinoma (ccRCC) cancer- and lineage-specific lncRNA. Agarose gel electrophoresis analysis and sanger sequencing verified two main isoforms of DGCR5 in ccRCC patient tissues and cell lines.
View Article and Find Full Text PDFLong noncoding RNAs (lncRNA) play important roles in gene expression regulation in diverse biological contexts. Numerous studies have indicated that lncRNA-gene interactions are closely related to the occurrence and development of cancers. Thus, it is important to develop an effective method for the identification of target genes of lncRNA.
View Article and Find Full Text PDFBackground: Identification of the quantitative trait locus (QTL) underlying salt tolerance is a prerequisite for marker-assisted selection in the salt-tolerant breeding process.
Methods: In this study, the recombinant inbred lines derived from the salt-tolerant elite soybean cultivar 'Jidou 12' and the salt-sensitive elite cultivar 'Ji NF 58' were used to identify the QTL associated with salt tolerance, using both salt tolerance rating (STR) and leaf chlorophyll content (SPAD) as indicators.
Results: A major salt-tolerant QTL, which was flanked by SSR markers GMABAB and Barcsoyssr_03_1421 on chromosome 3, was identified based on single-marker regression, single trait composite interval mapping, and multiple interval mapping analysis.
() is a common bioleaching bacterium that possesses a sophisticated and highly efficient inorganic sulfur compound metabolism network. Thiosulfate, a central intermediate in the sulfur metabolism network of and other sulfur-oxidizing microorganisms, can be metabolized via the tetrathionate intermediate (SI) pathway catalyzed by thiosulfate:quinol oxidoreductase (Tqo or DoxDA) and tetrathionate hydrolase (TetH). In , there is an additional two-component system called RsrS-RsrR.
View Article and Find Full Text PDF