The environmental hazards caused by microplastics (MPs) have received widespread attention, but the effects of non-biodegradable and biodegradable MPs of long-term presence on continuously operating sewage treatment bioreactors are not well known. In this study, we investigated the effect of a representative non-biodegradable MP, polyethylene terephthalate (PET), and a biodegradable MP, polylactic acid (PLA), on the nitrogen removal performance of conventional anoxic/aerobic (A/O) process. The NH-N removal efficiencies were suppressed to 91.
View Article and Find Full Text PDFElectrolyzing CO into ethylene (CH) is a promising strategy for CO utilization and carbon neutrality since CH is an important industrial feedstock. However, selectively converting CO into CH the CO electro-reduction reaction (CO ERR) is still a great challenge. Herein, Cu-CuO nanoparticles anchored on reduced graphene oxide nanosheets (Cu-CuO/rGO) were prepared from copper hydroxide nanostrands (CHNs) and graphene oxide (GO) nanosheets electrochemical reduction.
View Article and Find Full Text PDFBackground: Circular RNAs (circRNAs) are highly stable regulators, often accumulated in mammalian brains and thought to serve as "memory molecules" that govern the long process of aging. Mounting evidence demonstrated circRNA dysregulation in the brains of Alzheimer's disease (AD) patients. However, whether and how circRNA dysregulation underlies AD progression remains unexplored.
View Article and Find Full Text PDFThe increasing computing power of AI presents a major challenge for high-power chip solution and heat dissipation. Boron nitride nanosheet-based thermal interface materials (BNNS-based TIMs) exhibit excellent electrical insulation property, ensuring the secure and stable operation of chips. However, the efficiency of micro/nano interfacial thermal transport is limited, impeding further enhancements in the thermal conductivity (TC) of BNNS-based TIMs.
View Article and Find Full Text PDFMammalian sperm glycans directly mediate several key life events. However, previous studies have not focused on two key factors that regulate these processes, the terminal glycan pattern and the anchoring sites. Herein, we group the capping monosaccharide sialic acid (Sia) and its capping substrates galactose/-acetylgalactosamine (Gal/GalNAc) into a "correlated terminal glycan pair" (glycopair) and, for the first time, reveal the differences in the aglycone pattern of this pair on spermatozoa using glyco-selective in situ covalent labeling techniques.
View Article and Find Full Text PDFThe antibiotic ciprofloxacin (CIP), detected in various aqueous environments, has broad-spectrum antimicrobial properties that can severely affect methanogenic performance in anaerobic systems. In this study, a novel strategy to alleviate the inhibition of AD performance under CIP press with the direct addition of biochar (BC) prepared from corn stover was proposed and the corresponding alleviation mechanism was investigated. When the dosage of BC was 5 and 20 g/L, the cumulative methane production in AD could reach 317.
View Article and Find Full Text PDFThis study aims to explore the active components and mechanism of Wuhu Decoction in treating respiratory syncytial virus(RSV)-induced asthma. Ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry was used to determine the components of Wuhu Decoction in the blood. By utilizing databases, Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis and Gene Ontology(GO) functional analysis were conducted to investigate the targets of the components of Wuhu Decoction in asthma.
View Article and Find Full Text PDFPurpose Of Review: This review aims to evaluate the potential of CRISPR-based gene editing tools, particularly prime editors (PE), in treating genetic cardiac diseases. It seeks to answer how these tools can overcome current therapeutic limitations and explore the synergy between PE and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) for personalized medicine.
Recent Findings: Recent advancements in CRISPR technology, including CRISPR-Cas9, base editors, and PE, have demonstrated precise genome correction capabilities.
Primary ciliary dyskinesia (PCD) is a clinically rare, genetically and phenotypically heterogeneous condition characterized by chronic respiratory tract infections, male infertility, tympanitis, and laterality abnormalities. PCD is typically resulted from variants in genes encoding assembly or structural proteins that are indispensable for the movement of motile cilia. Here, we identified a novel nonsense mutation, c.
View Article and Find Full Text PDFObjective: To investigate the etiology, diagnosis and treatment of 45,X/46,XY mixed gonadal dysgenesis and the patients' clinical characteristics of conception, pregnancy and delivery, with purpose of improving the treatment and pregnancy management of the patients.
Methods: We retrospectively analyzed the clinical data on a pregnant patient with 45,X/46,XY mixed gonadal dysgenesis.
Results: Based on the findings of hypoplasia of secondary sexual characteristics, streak gonads, chromosome karyotype incompatibility with social sex, and chromosome aberration in the gonadal tissue, the patient was diagnosed with 45,X/46,XY mixed gonadal dysgenesis, received oocyte donation and intracytoplasmic sperm injection-embryo transfer (ICSI-ET), and achieved a live birth.
Oligoasthenozoospermia (OAS) is one of the most common types of male infertility, which, however, still lacks effective treatment. An increasing number of studies have shown the potential therapeutic value of omega-3 polyunsaturated fatty acid (ω-3 PUFA) in the treatment of OAS. This article presents an overview of the studies on the effects of ω-3 PUFA on fatty acid composition and metabolism, inflammatory response, and oxidative stress in OAS, hoping to provide some new ideas for the treatment of the disease.
View Article and Find Full Text PDFMotivation: 5-Hydroxymethylcytosine (5hmC), a crucial epigenetic mark with a significant role in regulating tissue-specific gene expression, is essential for understanding the dynamic functions of the human genome. Despite its importance, predicting 5hmC modification across the genome remains a challenging task, especially when considering the complex interplay between DNA sequences and various epigenetic factors such as histone modifications and chromatin accessibility.
Results: Using tissue-specific 5hmC sequencing data, we introduce Deep5hmC, a multimodal deep learning framework that integrates both the DNA sequence and epigenetic features such as histone modification and chromatin accessibility to predict genome-wide 5hmC modification.
Oligozoospermia is an important cause of male infertility for which treatment options are limited. Spermatogenesis is complex, and the causes of oligozoospermia remain largely unknown. Because genetic mutations are important factors of oligozoospermia pathogenesis, our study aimed to explore the genetic causes of oligozoospermia.
View Article and Find Full Text PDFSingle-cell ATAC-seq sequencing data (scATAC-seq) has been widely used to investigate chromatin accessibility on the single-cell level. One important application of scATAC-seq data analysis is differential chromatin accessibility (DA) analysis. However, the data characteristics of scATAC-seq such as excessive zeros and large variability of chromatin accessibility across cells impose a unique challenge for DA analysis.
View Article and Find Full Text PDFRecent research emphasised the indispensable role of histone lactylation in the activation of hepatic stellate cells. The VHL mutation is extremely common in clear cell renal cell carcinoma, which normally causes a metabolic shift in cancer cells and increases lactate production, eventually creating a lactate-enriched tumour microenvironment. Cancer-associated fibroblasts (CAFs) promote tumour progression, which is also vital in clear cell renal cell carcinoma.
View Article and Find Full Text PDFBackground: Lysine methyltransferase 2D (KMT2D) mediates mono-methylation of histone H3 lysine 4 (H3K4me1) in mammals. H3K4me1 mark is involved in establishing an active chromatin structure to promote gene transcription. However, the precise molecular mechanism underlying the KMT2D-mediated H3K4me1 mark modulates gene expression in triple-negative breast cancer (TNBC) progression is unresolved.
View Article and Find Full Text PDFFerrocene (Fc) and Fc derivatives have gained popularity in recent years due to their unique structure and characteristics. Among Fc's diverse performances, photothermal conversion, as a primary source of energy conversion, has sparked substantial study attention. This Review summaries Fc and Fc derivatives with photothermal characteristics, as well as their applications developed recently.
View Article and Find Full Text PDF