Reformulation with addition of antioxidants is one potential mitigation strategy to prevent or reduce nitrosamine drug substance-related impurities (NDSRIs) in drug products. To explore whether there could be other approaches to demonstrate bioequivalence for a reformulated oral product, which typically needs in vivo bioequivalence studies to support the changes after approval, the effects of antioxidant on the in vitro permeability of BCS III model drug substances were investigated to see whether there could be any potential impact on drug absorption. Six antioxidants were screened and four (ascorbic acid, cysteine, α-tocopherol and propyl gallate) were selected based on their nitrosamine inhibition efficiencies.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
May 2023
On November 30, 2021, the US Food and Drug administration (FDA) and the Center for Research on Complex Generics (CRCG) hosted a virtual public workshop titled "Establishing the Suitability of Model-Integrated Evidence (MIE) to Demonstrate Bioequivalence for Long-Acting Injectable and Implantable (LAI) Drug Products." This workshop brought relevant parties from the industry, academia, and the FDA in the field of modeling and simulation to explore, identify, and recommend best practices on utilizing MIE for bioequivalence (BE) assessment of LAI products. This report summerized presentations and panel discussions for topics including challenges and opportunities in development and assessment of generic LAI products, current status of utilizing MIE, recent research progress of utilizing MIE in generic LAI products, alternative designs for BE studies of LAI products, and model validation/verification strategies associated with different types of MIE approaches.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
May 2023
In silico mechanistic modeling approaches have been designed by various stakeholders with the goal of supporting development and approval of generic orally inhaled drug products in the United States. This review summarizes the presentations and panel discussion that comprised a workshop session concentrated on the use of in silico models to predict various outcomes following orally inhaled drug product administration, including the status of such models and how model credibility may be effectively established.
View Article and Find Full Text PDFRegulatory science for generic dry powder inhalers (DPIs) in the United States (U.S.) has evolved over the last decade.
View Article and Find Full Text PDFAdv Drug Deliv Rev
October 2022
Regulatory science for generic dry powder inhalation products worldwide has evolved over the last decade. The revised draft guidance Metered Dose Inhaler (MDI) and Dry Powder Inhaler (DPI) Products - Quality Considerations [1] (Revision 1, April 2018) that FDA issued summarizes product considerations and potential critical quality attributes (CQAs). This guidance emphasizes the need to apply the principles of quality by design (QbD) and elements of pharmaceutical development discussed in the International Conference for Harmonisation of (ICH) guidelines.
View Article and Find Full Text PDFIn 2016, the US Food and Drug Administration (FDA) approved the first Abbreviated New Drug Application for Mometasone Furoate Nasal Suspension Spray. To establish the bioequivalence of this generic nasal suspension spray with the reference listed drug product (RLD), Nasonex®, a "weight-of-evidence" approach was utilized by the applicant that included formulation and device similarities, equivalent in vitro performance, equivalent systemic exposure, and equivalent local delivery. In addition to these testing for comprehensive evaluation of the drug product, FDA also considered supportive data generated by a novel in vitro method, Morphologically-Directed Raman Spectroscopy (MDRS), to characterize the particle size distribution (PSD) of active pharmaceutical ingredient (API) in the drug product.
View Article and Find Full Text PDFOral modified-release (MR) products are dosage forms administered through the mouth and designed to release drug in a controlled manner to achieve maximum efficacy, minimal side effects, and better patient compliance. With significant progress in pharmaceutical technologies and favored therapeutic benefit, more and more oral MR products including the generic versions of these products are being developed, marketed, and used in the USA. Because different types of MR products may exhibit unique drug release modes and specific pharmacokinetic profiles, a better understanding of the regulation and evaluation of these generic MR products can help development and marketing of generic MR products that are therapeutically equivalent to the corresponding reference product.
View Article and Find Full Text PDFThis article is part of a series of reports from the "Orlando Inhalation Conference-Approaches in International Regulation" which was held in March 2014, and coorganized by the University of Florida and the International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS). The goal of the conference was to foster the exchange of ideas and knowledge across the global scientific and regulatory community in order to identify and help move towards strategies for internationally harmonized, science-based regulatory approaches for the development and marketing approval of inhalation medicines, including innovator and second entry products. This article provides an integrated perspective of case studies and discussion related to in vitro testing of orally inhaled products, including in vitro-in vivo correlations and requirements for in vitro data and statistical analysis that support quality or bioequivalence for regulatory applications.
View Article and Find Full Text PDFInternational regulatory agencies have developed recommendations and guidances for bioequivalence approaches of orally inhaled drug products (OIDPs) for local action. The objective of this article is to discuss the similarities and differences among these approaches used by international regulatory authorities when applications of generic and/or subsequent entry locally acting OIDPs are evaluated. We focused on four jurisdictions that currently have published related guidances for generic and/or subsequent entry OIDPs.
View Article and Find Full Text PDFEquivalence testing of aerodynamic particle size distribution (APSD) through multi-stage cascade impactors (CIs) is important for establishing bioequivalence of orally inhaled drug products. Recent work demonstrated that the median of the modified chi-square ratio statistic (MmCSRS) is a promising metric for APSD equivalence testing of test (T) and reference (R) products as it can be applied to a reduced number of CI sites that are more relevant for lung deposition. This metric is also less sensitive to the increased variability often observed for low-deposition sites.
View Article and Find Full Text PDFEstablishing bioequivalence (BE) of drugs indicated to treat cancer poses special challenges. For ethical reasons, often, the studies need to be conducted in cancer patients rather than in healthy volunteers, especially when the drug is cytotoxic. The Biopharmaceutics Classification System (BCS) introduced by Amidon (1) and adopted by the FDA, presents opportunities to avoid conducting the bioequivalence studies in humans.
View Article and Find Full Text PDFDemonstrating bioequivalence (BE) for nasal spray/aerosol products for local action has been very challenging because the relationship between the drug in systemic circulation and the drug reaching the nasal site of action has not been well established. Thus, the current BE standard for these drug/device combination products is based on a weight-of-evidence approach, which contains three major elements: equivalent in vitro performance, equivalent systemic exposure, and equivalent local delivery. In addition, formulation sameness and device similarity are evidences to support BE.
View Article and Find Full Text PDFDemonstration of equivalence in aerodynamic particle size distribution (APSD) is one key component for establishing bioequivalence of orally inhaled drug products. We previously proposed a modified version of the Chi-square ratio statistic (mCSRS) for APSD equivalence testing and demonstrated that the median of the distribution of the mCSRS (MmCSRS) is a robust metric when test (T) and reference (R) cascade impactor (CI) profiles are identical. Here, we systematically evaluate the behavior of the MmCSRS when T and R CI profiles differ from each other in their mean deposition and variability on a single and multiple sites.
View Article and Find Full Text PDF"For-cause" inspections are initiated during the review of bioequivalence (BE) data submitted to Abbreviated New Drug Applications when possible scientific misconduct and study irregularities are discovered. We investigated the common reasons for initiating "for-cause" inspections related to the clinical, analytical, and dissolution study sites associated with BE studies. This information may help the pharmaceutical industry to understand the root causes of compliance failures in BE studies and help them to improve compliance with FDA's regulations, thereby facilitating more rapid approval of safe and effective generic drugs.
View Article and Find Full Text PDFIn April 2010 a workshop on the "Role of Pharmacokinetics in Establishing Bioequivalence for Orally Inhaled Drug Products" was sponsored by the Product Quality Research Institute (PQRI) in coordination with Respiratory Drug Delivery (RDD) 2010. The objective of the workshop was to evaluate the current state of knowledge and identify gaps in information relating to the potential use of pharmacokinetics (PK) as the key indicator of in vivo bioequivalence (BE) of locally acting orally inhaled products (OIPs). In addition, the strengths and limitations of the PK approach to detect differences in product performance compared with in vitro and pharmacodynamic (PD)/clinical/therapeutic equivalence (TE) studies were discussed.
View Article and Find Full Text PDFDry powder inhalers (DPIs) are used to deliver locally acting drugs (e.g., bronchodilators and corticosteroids) for treatment of lung diseases such as asthma and chronic obstructive pulmonary disease (COPD).
View Article and Find Full Text PDF