Publications by authors named "Bing Shen How"

Malaysia is the second largest producer and exporter of palm oil. Though several works have explored achieving emissions reduction in the palm oil sector, there existing gaps in analysing pathways for achieving net-zero emissions. Moreover, there are limited studies that evaluate the potential of palm oil biomass utilisation pathways based on emissions reduction capabilities, the cost of emissions reduction, and the technology readiness for implementation.

View Article and Find Full Text PDF

Conventional fossil fuels are relied on heavily to meet the ever-increasing demand for energy required by human activities. However, their usage generates significant air pollutant emissions, such as NO, SO, and particulate matter. As a result, a complete air pollutant control system is necessary.

View Article and Find Full Text PDF

The myriad consumption of plastic regularly, environmental impact and health disquietude of humans are at high risk. Along the line, international cooperation on a global scale is epitomized to mitigate the environmental threats from plastic usage, not limited to implementing international cooperation strategies and policies. Here, this study aims to provide explicit insight into possible cooperation strategies between countries on the post-treatment and management of plastic.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) is a flammable, corrosive and lethal gas even at low concentrations (ppm levels). Hence, the capture and removal of HS from various emitting sources (such as oil and gas processing facilities, natural emissions, sewage treatment plants, landfills and other industrial plants) is necessary to prevent and mitigate its adverse effects on human (causing respiratory failure and asphyxiation), environment (creating highly flammable and explosive environment), and facilities (resulting in corrosion of industrial equipment and pipelines). In this review, the state-of-the-art technologies for HS capture and removal are reviewed and discussed.

View Article and Find Full Text PDF

The growth of global population continuously increases the demands for agroforestry-derived products, underpinning a sustainable growth of energy matrix in the sectors of food security, transportation, and industrial is momentous. The high demand for the sustainable energy sources has led to an increase in the application of pesticides associated with growing crops for the production of biofuel. In 2019, the global consumption of pesticides was 4.

View Article and Find Full Text PDF

Dry reforming of biogas is referred as an attractive path for sustainable H production over decades. Meanwhile, in the Malaysian context, the abundance of palm oil mill effluent (POME) produced annually is deemed as a potential renewable source for renewable energy generation. Conventionally, nickel (Ni) is the most common catalyst used in the industrial-scale dry reforming of methane (DRM) to yield H, but it is subject to the drawbacks of sintering and deactivation after a long reaction time at high temperatures (>500 °C).

View Article and Find Full Text PDF

The fourth Industrial Revolution is stimulating a fast-paced and resilient industrial internet of things (IIoT) ecosystem. Blockchain, a decentralized digital ledger technology, plays a crucial role in improvising, securing, and streamlining traditional biotechnology-related industrial processes with IoT and creates a sustainable nexus between social, economic, and environmental aspects.

View Article and Find Full Text PDF

The environmental footprints of Hproductionviacatalytic gasification of wheat straw using straw-derived biochar catalysts were examined. The functional unit of 1 kg of Hwas adopted in the system boundaries, which includes 5 processes namely biomass collection and pre-treatment units (P1), biochar catalyst preparation using fast pyrolysis unit (P2), two-stage pyrolysis-gasification unit (P3), products separation unit (P4), and Hdistribution to downstream plants (P5). Based on the life-cycle assessment, the hot spots in this process were identified, the sequence was as follows: P4 > P2 > P1 > P3 > P5.

View Article and Find Full Text PDF

The material characteristics and properties of transition metal dichalcogenide (TMDCs) have gained research interest in various fields, such as electronics, catalytic, and energy storage. In particular, many researchers have been focusing on the applications of TMDCs in dealing with environmental pollution. TMDCs provide a unique opportunity to develop higher-value applications related to environmental matters.

View Article and Find Full Text PDF

The aim of this study was to understand the influence of catalyst in thermal degradation behavior of rice husk (RH) in catalytic fast pyrolysis (CFP) process. An iso-conversional Kissinger kinetic model was introduced into this study to understand the activation energy (E), pre-exponential value (A), Enthalpy (ΔH), Entropy (ΔS) and Gibb's energy (ΔG) of non-catalytic fast pyrolysis (NCFP) and CFP of RH. The study revealed that the addition of natural zeolite catalyst enhanced the rate of devolatilization and decomposition of RH associated with lowest E value (153.

View Article and Find Full Text PDF

The aim of this study is to identify the optimum thermal conversion of Chlorella vulgaris with neuro-evolutionary approach. A Progressive Depth Swarm-Evolution (PDSE) neuro-evolutionary approach is proposed to model the Thermogravimetric analysis (TGA) data of catalytic thermal degradation of Chlorella vulgaris. Results showed that the proposed method can generate predictions which are more accurate compared to other conventional approaches (>90% lower in Root Mean Square Error (RMSE) and Mean Bias Error (MBE)).

View Article and Find Full Text PDF

The rising pressure on both cleaner production and sustainable development have been the main driving force that pushes mankind to seek for alternative greener and sustainable feedstocks for chemical and energy production. The biomass 'waste-to-wealth' concept which convert low value biomass into value-added products which contain high economic potential, have attracted the attentions from both academicians and industry players. With a tropical climate, Malaysia has a rich agricultural sector and dense tropical rainforest, giving rise to abundance of biomass which most of them are underutilized.

View Article and Find Full Text PDF