Publications by authors named "Bing M Liao"

Protein kinase C epsilon (PKCɛ) activation in the liver is proposed to inhibit insulin action through phosphorylation of the insulin receptor. Here, however, we demonstrated that global, but not liver-specific, deletion of PKCɛ in mice protected against diet-induced glucose intolerance and insulin resistance. Furthermore, PKCɛ-dependent alterations in insulin receptor phosphorylation were not detected.

View Article and Find Full Text PDF

Isoforms of flavin-containing monooxygenase (FMO) are involved in xenobiotic metabolism but have also been implicated in the regulation of glucose and lipid homeostasis and in the development of atherosclerosis. However, we have recently shown that improved insulin action is associated with increased FMO expression in livers of protein kinase C-deficient mice. Here, we investigated whether FMO3 expression affected insulin signaling, glucose metabolism, and endoplasmic reticulum (ER) stress in hepatocytes.

View Article and Find Full Text PDF

Proteins of the Homeodomain-Interacting Protein Kinase (HIPK) family regulate an array of processes in mammalian systems, such as the DNA damage response, cellular proliferation and apoptosis. The nematode Caenorhabditis elegans has a single HIPK homologue called HPK-1. Previous studies have implicated HPK-1 in longevity control and suggested that this protein may be regulated in a stress-dependent manner.

View Article and Find Full Text PDF

Insulin resistance contributes to the development of Type 2 diabetes, and is associated with lipid oversupply. Deletion of isoforms of the lipid-activated protein kinase C (PKC) family, PKCδ or PKCε, improves insulin action in fat-fed mice, but differentially affects hepatic lipid metabolism. To investigate the mechanisms involved, we employed an in vivo adaptation of SILAC to examine the effects of a fat diet together with deletion of PKCδ or PKCε on the expression of liver proteins.

View Article and Find Full Text PDF