Publications by authors named "Bing Fen Liu"

The human lens crystallin gene CRYGC T5P is associated with Coppock-like cataract and has a phenotype of a dust-like opacity of the fetal lens nucleus and deep cortical region. Previous in vitro mutation studies indicate that the protein has changed conformation, solubility, and stability, which may make it susceptible to aggregation, as seen in cataractous lens and cell culture expression. To investigate the mechanisms leading to these events, we studied protein-protein interactions using confocal fluorescence resonance energy transfer (FRET) microscopy.

View Article and Find Full Text PDF

The formation of methylglyoxal (MG), a reactive dicarbonyl compound, is accelerated under hyperglycemia, presumably contributing to tissue injury in diabetes. On the other hand, prostaglandin E2 (PGE2) has been implicated in glomerular hyperfiltration, a characteristic change in the early stage of diabetic nephropathy. We therefore examined whether MG was capable of inducing PGE2 production in rat mesangial cells (RMC) to address a possible mechanism by which hyperglycemia-derived dicarbonyls accelerated the development of diabetic nephropathy.

View Article and Find Full Text PDF

Purpose: The R120G mutation of alphaB-crystallin is known to cause desmin-related myopathy, but the mechanisms underlying the formation of cataract are not clearly established. We hypothesize that alteration of protein-protein interaction between R120G alphaB-crystallin and lens intermediate filament proteins is one of the mechanisms of congenital cataract.

Methods: Protein-protein interactions were determined by confocal fluorescence resonance energy transfer (FRET) microscopy using green fluorescence protein (GFP) as the donor and red fluorescence protein (RFP) as the acceptor.

View Article and Find Full Text PDF

MIP26/AQP0 is the major lens fiber membrane protein and has been reported to interact with many other lens components including crystallins, lipid, and cytoskeletal proteins. Regarding crystallins, many previous reports indicate that MIP26/AQP0 interacts with either only alpha-crystallin or some specific gamma-crystallins. Considering the possibly important role of MIP26/AQP0 in the reduction of light scattering in the lenses, we have further investigated its interaction with crystallins using confocal fluorescence resonance energy transfer (FRET) microscopy.

View Article and Find Full Text PDF

Human lens beta-crystallin contains four acidic (betaA1-->betaA4) and three basic (betaB1-->betaB3) subunits. They oligomerize in the lens, but it is uncertain which subunits are involved in the oligomerization. We used a two-hybrid system to detect protein-protein interactions systematically.

View Article and Find Full Text PDF

Purpose: To determine protein-protein interactions among lens crystallins in living cells.

Methods: Fluorescence resonance energy transfer (FRET) microscopy was used to visualize interactions in living cells directly. Two genes, one (alphaA-crystallin) fused with green fluorescence protein (GFP) and the other (each of the following genes: alphaB-, betaB2-, gammaC-crystallin, and R120G alphaB-crystallin mutant) fused with GFP variant red fluorescence protein (RED), were cotransfected into HeLa cells.

View Article and Find Full Text PDF

Lens alpha-crystallin is an oligomeric protein with a molecular mass of 500-1000 kDa and a polydispersed assembly. It consists of two types of subunits, alphaA and alphaB, each with a molecular mass of 20 kDa. The subunits also form homo-oligomers in some other tissues and in vitro.

View Article and Find Full Text PDF

Heat shock protein 27 (Hsp27) is a stress-inducible protein in cells that functions as a molecular chaperone and also as an anti-apoptotic protein. Methylglyoxal (MGO) is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins to form products such as argpyrimidine. We found considerable amount of Hsp27 in phosphorylated form (pHsp27) in human cataractous lenses.

View Article and Find Full Text PDF

betaB2-crystallin, the major component of beta-crystallin, is a dimer at low concentrations but can form oligomers under physiological conditions. The interaction domains have been speculated to be the beta-sheets, each of which is formed by two or more beta-strands. betaB2-crystallin consists of 16 beta-strands, 8 in the N-terminal domain and 8 in the C-terminal domain.

View Article and Find Full Text PDF

Purpose: Missense mutations in crystallin genes have been identified in autosomal dominant congenital cataracts. A truncation in the CRYBB2 gene (Q155*) has been associated with cerulean cataract, however its effects on biophysical properties have not been reported. We sought to determine the changes in conformation and protein-protein interactions brought about by this mutation.

View Article and Find Full Text PDF

Recent studies implicate hyperglycemia as a cause of vascular complications in diabetes. Our study confirmed that high concentration of glucose (30 mM) induces apoptosis in cultures of human umbilical vein endothelial cells. After 5 days of culture TUNEL positive cells in high concentration of glucose were nearly 63% higher when compared to normal concentration of glucose (5 mM).

View Article and Find Full Text PDF

The formation of glucose-derived methylglyoxal (MG), a highly reactive dicarbonyl compound, is accelerated under diabetic conditions. We examined whether MG was capable of inducing apoptosis in Schwann cells (SCs), since recent studies have suggested a potential involvement of apoptotic cell death in the development of diabetic neuropathy. MG induced apoptosis in SCs in a dose-dependent manner, accompanied by a reduction of intracellular glutathione content and activation of the p38 MAPK.

View Article and Find Full Text PDF

Purpose: To determine effects of alpha-dicarbonyl modification of an extracellular matrix protein on retinal capillary pericyte attachment and viability.

Methods: Primary cultures of bovine retinal pericytes (BRPs) were seeded on either normal fibronectin (FN) or FN modified by methylglyoxal (MGO) and glyoxal (GO). Apoptosis was measured by flow cytometry along with caspase-3 activity.

View Article and Find Full Text PDF

Objective: 3-Deoxyglucosone (3-DG), a highly reactive intermediate of the glycation reaction, has been suggested to contribute to the development of diabetes complications. To verify this hypothesis, we assessed the relation between serum 3-DG concentrations and the severity of diabetic microangiopathy in diabetic patients.

Research Design And Methods: We conducted a high-performance liquid chromatography assay to determine the serum 3-DG concentrations of 110 diabetic patients with different degrees of severity of diabetic microangiopathy and 57 age-matched control subjects.

View Article and Find Full Text PDF

Background: The formation of methylglyoxal (MG), a highly reactive dicarbonyl compound, is accelerated through several pathways, including the glycation reaction under diabetic conditions, presumably contributing to tissue injury in diabetes. On the other hand, apoptotic cell death of glomerular cells has been suggested to play a role in the development of glomerulosclerosis in various types of glomerular injuries. We therefore examined whether MG was capable of inducing apoptosis in rat mesangial cells to address the possible mechanism by which hyperglycemia-related products accelerated pathologic changes in diabetic glomerulosclerosis.

View Article and Find Full Text PDF