Publications by authors named "Bing Cheng Si"

Regional groundwater recharge is a critical scientific issue for sustainable groundwater resource development and management. However, spatial variations in groundwater recharge in the Loess Plateau (LP) remain poorly understood. To fill this knowledge gap, a systematic sampling campaign and stable isotope analysis were carried out for groundwater (shallow aquifer) in 13 major catchments during July 2019.

View Article and Find Full Text PDF

The extreme changes in autumn rain have significant impacts on the ecological environment of Weihe River basin. Based on 117 autumn rain samples and corresponding meteorological data from 2015 to 2021 at Yangling located in the middle of Weihe River basin, we investigated the stable hydrogen and oxygen isotope composition and water vapor sources of precipitation. The results showed that, (1) extreme changes in autumn rainfall in the study area occurred frequently in recent years, which could be divided into extreme-high autumn precipitation year (HAP, 2021), general autumn precipitation year (GAP, 2015-2017, 2019-2020) and extreme-low autumn precipitation year (LAP, 2018) based on the autumn rain index (ARI); (2) the stable isotopes of different types of precipitation differed significantly, with a pattern of LAP>GAP>HAP for both δH and δO values.

View Article and Find Full Text PDF

The Weihe and Jinghe Rivers catchments are important tributaries of the Yellow River, where it is of great significance to evaluate groundwater hydrochemistry and quality for ecological protection and sustainable development. Piper diagrams, Gibbs, Na-normalized molar ratios, and ion correlation methods were used to analyze the chemical composition of groundwater in these two catchments. Furthermore, the WQI method, Wilcox diagrams, USSL diagrams, and Doneen diagrams were used to evaluate the suitability of groundwater quality for drinking and irrigation.

View Article and Find Full Text PDF
Article Synopsis
  • The Fenhe River basin is the second largest tributary of the Yellow River and underwent detailed analysis of its groundwater using various scientific methods, revealing its water cycle and quality evolution.
  • The groundwater is characterized as weakly alkaline with dominant ions being HCO and Ca, showing overall good quality as over 94% of samples fall within safe classes.
  • Groundwater isotopes indicate origins from summer precipitation, with rock weathering contributing the most ions (87%), while atmospheric input and human activities account for 8% and 5%, respectively, supporting sustainable groundwater resource management in the region.
View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed 98 precipitation samples from the Guanzhong Plain in Shanxi Province between 2015 and 2018 to understand the stable isotope characteristics of hydrogen and oxygen and their vapor sources.
  • Seasonal variations in hydrogen and oxygen isotopes revealed that these isotopes are depleted during the wet season (May to October) and enriched in the dry season (November to April).
  • The research established local meteoric water lines and determined that 55%-79% of the precipitation vapor originates from the ocean, influenced by both the southeast monsoon and cold air from the westerly wind.
View Article and Find Full Text PDF

We used two types of soil with different physicochemical properties (loam and sand), oven-dried them, and then added the known isotopic composition mineral water that was reference water to compose the soil-water mixture with different soil water contents (loam: 0.15, 0.20, 0.

View Article and Find Full Text PDF

Carbon storage in the Loess Plateau is affected by land use. In order to assess the differences in soil organic carbon (SOC) and soil inorganic carbon (SIC) under different land use patterns in deep soil profiles, we investigated the distribution characteristics of SOC and SIC at 0-20.0 m soil depth at three locations in the northern Shaanxi province (i.

View Article and Find Full Text PDF

This study explored the differences of soil water content at 0-20 m soil depth at three locations, including economical plantation in Mizhi, reforestation area in Shenmu, and wind break and sand fixation forest district of Yuyang, and for clarifying the impacts of different land use types on deep soil water distribution and storage characterization, as well as its eco-environmental effect on the loess hilly area. The results showed that in the soil profile of 0-20 m, land use patterns had a significant impact on soil moisture distribution. There were significant differences of soil water sto-rage for the economical plantation, pruning Ziziphus jujuba plantation > Z.

View Article and Find Full Text PDF

The primary objective of this study was to evaluate a range of calculation points on water retention curves (WRC) instead of the singularity point at air-entry suction in the pore-solid fractal (PSF) model, which additionally considered the hysteresis effect based on the PSF theory. The modified pore-solid fractal (M-PSF) model was tested using 26 soil samples from Yangling on the Loess Plateau in China and 54 soil samples from the Unsaturated Soil Hydraulic Database. The derivation results showed that the M-PSF model is user-friendly and flexible for a wide range of calculation point options.

View Article and Find Full Text PDF

The reclamation of mature fine tailings (MFT) is a critical challenge for the oil sands industry in western Canada, and a nonradioactive, automated, and inexpensive method to monitor the MFT solidification is needed. The objective of this paper is to evaluate the feasibility of a dual-probe heat pulse (DPHP) method to measure MFT solid percentage. Dual-probe heat pulse measurements were performed on three MFT samples, each at various solid percentages.

View Article and Find Full Text PDF

Soil water repellency (SWR) has a drastic impact on soil quality resulting in reduced infiltration, increased runoff, increased leaching, reduced plant growth, and increased soil erosion. One of the causes of SWR is hydrophobic fungal structures and exudates that change the soil-water relationship. The objective of this study was to determine whether SWR and infiltration could be manipulated through inoculation with fungi.

View Article and Find Full Text PDF

Fungal surface hydrophobicity has many ecological functions and water contact angles measurement is a direct and simple approach for its characterization. The objective of this study was to evaluate if in-vitro growth conditions coupled with versatile image analysis allows for more accurate fungal contact angle measurements. Fungal cultures were grown on agar slide media and contact angles were measured utilizing a modified microscope and digital camera setup.

View Article and Find Full Text PDF