This paper investigates the use of consumer flatbed scanners for the use of monitoring solar cell precursors. Two types of scanners are investigated a contact image scanner and scanners with more conventional optical setups. The contact image sensor is found to be more suitable as it does not require additional flat field calibration.
View Article and Find Full Text PDFSilicon carbide (SiC) is widely used as the substrate for high power electronic devices as well as susceptors for microwave (MW) heating. The dynamics of microwave interaction with SiC is not fully understood, especially at the material boundaries. In this paper, we used the molecular dynamics simulation method to study the temperature evolution during the microwave absorption of SiC under various amplitudes and frequencies of the microwave electric field.
View Article and Find Full Text PDFThis report investigates the influence of the solution blend composition of binary bulk heterojunction organic solar cells composed of poly(2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H- cyclopenta[2,1-b:3,4-b'dithiophene-2,6-diy]] (PCPDTBT) and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM). The blend polymer:fullerene composition was varied from 1:1 (50 wt% PC71 BM) to 2:9 (82 wt% PC71 BM). Increasing the amount of polymer in the blend results in the greatest overall absorption, as the donor material PCPDTBT is the main contributor to absorption.
View Article and Find Full Text PDFAll-Si tandem solar cells based on Si quantum dots (QDs) are a promising approach to future high-performance, thin film solar cells using abundant, stable and non-toxic materials. An important prerequisite to achieve a high conversion efficiency in such cells is the ability to control the geometry of the Si QD network. This includes the ability to control both, the size and arrangement of Si QDs embedded in a higher bandgap matrix.
View Article and Find Full Text PDF