The Watson-Crick base pairing property of DNA is widely used for fabricating DNA nanostructures with well-defined geometry. Moreover, DNA nanostructures can be easily modified in terms of shape, size and function at the nanoscale level. Therefore, investigation on smaller and stable branched DNA (bDNA) is of critical significance for biomedical applications.
View Article and Find Full Text PDFDNA has been employed as building blocks for the construction of nanomaterials due to their programmability and wide range applications. The functional branched DNA (bDNA) nanostructure is largely dependent on the sequence and structural symmetry. Despite the discovery of different structures, the synthesis of bDNA nanostructures from optimal number of oligonucleotides is yet to be explored.
View Article and Find Full Text PDFDNA is widely used as building block material for the construction of polyhedral nanostructures. DNA polyhedrons (DNA prism, cube, and square pyramid) are small 3D wireframed nanostructures with tunable shapes and sizes. Despite substantial progress in synthesis, the study regarding cellular responses to DNA polyhedrons is limited.
View Article and Find Full Text PDFSelf-assembled branched DNA (bDNA) nanomaterials have exhibited their functionality in various biomedical and diagnostic applications. However, the anionic cellular membrane has restricted the movement of bDNA nanostructures. Recently, amphiphilic peptides have been investigated as cationic delivery agents for nucleic acids.
View Article and Find Full Text PDFThe emergence of DNA nanotechnology has shown enormous potential in a vast array of applications, particularly in the medicinal and theranostics fields. Nevertheless, the knowledge on the biocompatibility between DNA nanostructures and cellular proteins is largely unknown. Herein, we report the biophysical interaction between proteins (circulatory protein bovine serum albumin, BSA, and the cellular enzyme bovine liver catalase, BLC) and tetrahedral DNA (tDNA), which are well-known nanocarriers for therapeutics.
View Article and Find Full Text PDFBranched DNA (bDNA) nanostructures have emerged as self-assembled biomaterials and are being considered for biomedical applications. Herein, we report the biophysical interaction between self-assembled bDNA nanostructure with circulating protein bovine serum albumin (BSA) and cellular enzyme bovine liver catalase (BLC). The binding between bDNA and BSA or BLC was confirmed through the decrease in fluorescence spectra.
View Article and Find Full Text PDFInt J Biol Macromol
September 2019
The most remarkable conformational transition in nature is the B-to-Z transition of DNA which not only contributes for epigenetic regulation but also is exploited to create several advanced nanomaterials for sensing and nanomechanics. The present communication focuses on the intrinsic factors that control the La/Ce-induced B-to-Z transition in self-assembled branched DNA (bDNA) nanostructures. The transition is sensitive even to two nucleotide change in the loop length and overhang sequences.
View Article and Find Full Text PDF