Publications by authors named "Binder B"

Transient induction of the transcription factor early growth response protein-1 (EGR-1) plays a pivotal role in the transcriptional response of endothelial cells to the angiogenic growth factors vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which are produced by most tumors and are involved in the angiogenic switch. We report here that sustained expression of EGR-1 by recombinant adenoviruses in endothelial cells, however, leads to the specific induction of potent feedback inhibitory mechanisms, including strong up-regulation of transcriptional repressors, negative cell cycle check point effectors, proteins with established antiangiogenic activity, and several proapoptotic genes. Sustained EGR-1 expression consistently leads to an antiangiogenic state characterized by an altered responsiveness to VEGF and bFGF and a striking inhibition of sprouting and tubule formation in vitro.

View Article and Find Full Text PDF

Eruptive melanocytic nevi of the palms and soles are a rare phenomenon which has been associated with a number of different diseases. A variety of pathogenetic mechanisms have been proposed. A 22-year-old woman with Crohn disease since 1998 presented with multiple eruptive melanocytic nevi of the palms and soles.

View Article and Find Full Text PDF

Background: A longer duration treatment is preferred in erythema migrans (EM) to prevent late complaints.

Objectives: To determine whether 20 (20d-pt) or 14 days (14d-pt) of phenoxymethylpenicillin (PenV) have similar efficacy in treating EM and preventing further sequelae.

Patients And Methods: In a prospective double-centre study, 102 patients with EM were treated with PenV 1.

View Article and Find Full Text PDF

Oxidized phospholipids stimulate endothelial cells to bind monocytes, but not neutrophils, an initiating event in atherogenesis. Here, we investigate intracellular signaling events induced by oxidized phospholipids in human umbilical vein endothelial cells (HUVECs) that lead to specific monocyte adhesion. In a static adhesion assay, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine and one of its components, 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphorylcholine, stimulated HUVECs to bind U937 cells and human peripheral blood monocytes but not HL-60 cells or blood neutrophils.

View Article and Find Full Text PDF

We analyze the structural design and the dynamical properties of a protein kinase network derived from the Transpath database. We consider structural properties, such as feedback cycles, pathway lengths, fraction of shortest pathways and crosstalk. Dynamic characteristics of the network are analyzed by using nonlinear differential equations with a special focus on kinase amplitudes and signal propagation times.

View Article and Find Full Text PDF

Background: Keratitis-ichthyosis-deafness syndrome (KID syndrome) is an extremely rare disorder. Inheritance is autosomal dominant but many cases occur sporadically following a spontaneous mutation. The cause of KID syndrome are missense mutations of the gene GJB2, encoding connexin 26.

View Article and Find Full Text PDF

Herein, an efficient numerical method is presented to describe the flow of a liquid in an open channel with various types of bottom configurations. The method is developed for steady two-dimensional potential free surface flows. The resulting nonlinear problem is solved numerically by boundary integral equation methods.

View Article and Find Full Text PDF

Transforming growth factor-beta (TGF-beta), a key modulator of endothelial cell apoptosis, must be activated from the latent form (LTGF-beta) to induce biological responses. In the present study, we report activation of TGF-beta by functional and physical co-operation of the mannose-6-phosphate/insulin-like-growth-factor-II receptor (CD222) and the urokinase-type plasminogen activator receptor (CD87). We show that endothelial cells express CD222 and CD87 in a membrane complex and demonstrate that the association of these two receptors is essential for the release of active TGF-beta in the transduced mouse fibroblast used as model cells.

View Article and Find Full Text PDF

Atherosclerosis and its clinical manifestations are the leading cause of death in Western countries. Atherosclerosis is a multifactorial disease characterized by endothelial dysfunction, smooth muscle cell (SMC) proliferation and migration, inflammation, lipid and matrix accumulation and thrombus formation. Multiple genetic and environmental features and interactions between these factors influence the disease process.

View Article and Find Full Text PDF

Oncogenesis results from changes in kinetics or in abundance of proteins in signal transduction networks. Recently, it was shown that control of signalling cannot reside in a single gene product, and might well be dispersed over many components. Which of the reactions in these complex networks are most important, and how can the existing molecular information be used to understand why particular genes are oncogenes whereas others are not? We implement a new method to help address such questions.

View Article and Find Full Text PDF

Maturation of dendritic cells (DCs) induced by pathogen-derived signals via TLRs is a crucial step in the initiation of an adaptive immune response and therefore has to be well controlled. In this study, we demonstrate that oxidized phospholipids (ox-PLs), which are generated during infections, apoptosis, and tissue damage, interfere with DC activation, preventing their maturation. ox-PLs blocked TLR-3- and TLR-4-mediated induction of the costimulatory molecules CD40, CD80, CD83, and CD86, the cytokines IL-12 and TNF, as well as lymphocyte stimulatory capacity.

View Article and Find Full Text PDF

The effect of Nigella sativa (NS) L. oil (blackseed oil) on the fibrinolytic system of the human umbilical vein (HUV) and human uterine arterial (HUA) endothelial cells (ECs) in culture was studied. Both of them showed a concentration-dependent increase in tissue-type plasminogen activator (t-PA).

View Article and Find Full Text PDF

Background: The treatment of chronic leg ulcers requires frequent assessments of local wound status and adjustment of therapy. The availability of reasonably priced photographic equipment and quick electronic transfer of high-quality digital images should make it possible that the assessment of wound status can be made by remote experts.

Objective: This study examines the feasibility of using teledermatology for wound assessment and therapeutic suggestions for patients with chronic leg ulcers.

View Article and Find Full Text PDF

We present a theoretical approach for understanding the interrelations between dynamics and structure of signal transduction pathways. We consider large sets of networks with a specific number of kinases and phosphatases. Our methods are based on nonlinear differential equations and pathway dynamics is characterised in terms of signal amplification and signal duration.

View Article and Find Full Text PDF

Ethylene signaling in plants is mediated by a family of ethylene receptors related to bacterial two-component regulators. Expression in yeast of ethylene-binding domains from the five receptor isoforms from Arabidopsis thaliana and five-receptor isoforms from tomato confirmed that all members of the family are capable of high-affinity ethylene-binding activity. All receptor isoforms displayed a similar level of ethylene binding on a per unit protein basis, while members of both subfamily I and subfamily II from Arabidopsis showed similar slow-release kinetics for ethylene.

View Article and Find Full Text PDF

The HERC family of ubiquitin ligases is characterized by the presence of a HECT domain and one or more RCC1-like domains. We report the identification of two novel members, HERC4 and HERC6, and subdivide the family into one group of two large and one group of four small members according to protein size and domain structure. The small members share a similar genomic organization, three of them mapping to chromosomal region 4q22, indicating strong evolutionary cohesions.

View Article and Find Full Text PDF

Background: The plasmin activation system is involved in the development of restenosis after percutaneous coronary interventions (PCI). Conflicting data exist concerning the role of plasminogen activator inhibitor-1 (PAI-1) and its predictive value for restenosis.

Objectives: To evaluate the fibrinolytic response to injury after PCI with or without stent implantation on different antithrombotic medications and its relation to late restenosis.

View Article and Find Full Text PDF

General and simple principles are identified that govern signal transduction. The effects of kinase and phosphatase inhibition on a MAP kinase pathway are first examined in silico. Quantitative measures for the control of signal amplitude, duration and integral strength are introduced.

View Article and Find Full Text PDF

Objective: Lipoprotein-derived phospholipid oxidation products have been implicated as candidate triggers of the inflammatory process in atherosclerosis. However, in vivo evidence regarding the impact of oxidized phospholipids on the artery wall thus far has been elusive. Therefore, the aim of this study was to investigate if structurally defined oxidized phospholipids induce expression of atherogenic chemokines and monocyte adhesion in intact murine arteries.

View Article and Find Full Text PDF

We examined whether antithrombin (AT) inhibits tumor necrosis factor (TNF)-alpha-induced endothelial cell activation to elucidate molecular mechanism(s) of the anti-inflammatory activity of AT. AT inhibited the increase in E-selectin expression in cultured human umbilical vein endothelial cells (HUVECs) stimulated with TNF-alpha. In contrast, chemically modified AT that lacks affinity for heparin did not.

View Article and Find Full Text PDF

Responses to the plant hormone ethylene are mediated by a family of five receptors in Arabidopsis that act in the absence of ethylene as negative regulators of response pathways. In this study, we examined the rapid kinetics of growth inhibition by ethylene and growth recovery after ethylene withdrawal in hypocotyls of etiolated seedlings of wild-type and ethylene receptor-deficient Arabidopsis lines. This analysis revealed that there are two phases to growth inhibition by ethylene in wild type: a rapid phase followed by a prolonged, slower phase.

View Article and Find Full Text PDF

Kinetic studies indicate there are two phases to growth inhibition by ethylene for the hypocotyls of etiolated Arabidopsis seedlings. Phase I is transient, while phase II results in sustained growth inhibition. The EIN2 membrane protein is required for both the first and second phases of growth inhibition by ethylene, while the transcription factors EIN3 and EIL1 are required for the second phase but not the first phase.

View Article and Find Full Text PDF

We describe here the identification and initial characterization of a novel human gene termed IKIP (I kappa B kinase interacting protein) that is located on chromosome 12 in close proximity to APAF1 (apoptotic protease-activating factor-1). IKIP and APAF1 share a common 488 bp promoter from which the two genes are transcribed in opposite directions. Three IKIP transcripts are generated by differential splicing and alternative exon usage that do not show significant homology to other genes in the databases.

View Article and Find Full Text PDF

By differential screening we isolated genes upregulated in inflammatory cytokine-stimulated human skin microvascular endothelial cells. One of these cDNAs encoded RCC1 (regulator of chromosome condensation 1)-like repeats and a HECT (homologous to E6-AP C-terminus) domain, representing a member of the HERC (HECT and RCC1 domain protein) family of ubiquitin ligases. The mRNA level of this member, HERC5, is specifically upregulated in endothelial cells by the pro-inflammatory cytokines tumor necrosis factor alpha and interleukin 1beta, and by lipopolysaccharide (LPS), but is hardly expressed in other cells of the vascular wall such as primary smooth muscle cells and fibroblasts.

View Article and Find Full Text PDF