Publications by authors named "Binczak Stephane"

Eye blinks can be used to perform monitoring tasks such as drowsiness detection, attention measurement or other biological measurement mainly using video data. With the developement of brain computer interfaces (BCI) eye movements and blinks could be used to perform control tasks such as pointer activation or communications. This work aims to prove that it is possible to characterize eye blinks for each eye separately using only electroencephalography (EEG) signal acquired through non invasive portable device and dry electroencephalography.

View Article and Find Full Text PDF

Advances in neuronal studies suggest that a single neuron can perform integration functions previously associated only with neuronal networks. Here, we proposed a dendritic abstraction employing a dynamic thresholding function that models the spatiotemporal dendritic integration process of a CA3 pyramidal neuron. First, we developed an input-output quantification process that considers the natural neuronal response and the full range of dendritic dynamics.

View Article and Find Full Text PDF

Postsynaptic ionotropic receptors critically shape synaptic currents and underpin their activity-dependent plasticity. In recent years, regulation of expression of these receptors by slow inward and outward currents mediated by gliotransmitter release from astrocytes has come under scrutiny as a potentially important mechanism for the regulation of synaptic information transfer. In this study, we consider a model of astrocyte-regulated synapses to investigate this hypothesis at the level of layered networks of interacting neurons and astrocytes.

View Article and Find Full Text PDF

Information transfer may not be limited only to synapses. Therefore, the processes and dynamics of biological neuron-astrocyte coupling and intercellular interaction within this domain are worth investigating. Existing models of tripartite synapse consider an astrocyte as a point process.

View Article and Find Full Text PDF

Current functional electrical stimulation (FES) systems vary the stimulation intensity to control the muscle force in order to produce precise functional movements. However, mathematical model that predicts the intensity effect on the muscle force is required for model-based controller design. The most previous force model designed by Ding et al was validated only for a standardized stimulation pulse amplitude (intensity).

View Article and Find Full Text PDF

Background: Recent advanced applications of the functional electrical stimulation (FES) mostly used closed-loop control strategies based on mathematical models to improve the performance of the FES systems. In most of them, the pulse amplitude was used as an input control. However, in controlling the muscle force, the most popular force model developed by Ding et al.

View Article and Find Full Text PDF

The delta wave remains an important indicator to diagnose the WPW syndrome. In this paper, a new method of detection of delta wave in an ECG signal is proposed. Firstly, using the continuous wavelet transform, the P wave, the QRS complex and the T wave are detected, then their durations are computed after determination of the boundary location (onsets and offsets of the P, QRS and T waves).

View Article and Find Full Text PDF

The neurological damage after cardiac arrest presents a huge challenge for hospital discharge. Therapeutic hypothermia (34 °C - 32 °C) has shown its benefits in reducing cerebral oxygen demand and improving neurological outcomes after cardiac arrest. However, it can have many adverse effects, among them cardiac arrhythmia generation which represents an important part (up to 34%, according different clinical studies).

View Article and Find Full Text PDF

The evolution of the muscle tissue's complex permittivity represents a growing interest in terms of characterization in medicine and biology. The influence of a burned part on the permittivity is not very developed. In this work, an estimation of the complex permittivity of biological tissues is performed as a function of the depth of burn tissues.

View Article and Find Full Text PDF

In this paper, an experimental electronic neuron based on a complete Morris-Lecar model is presented, which is able to become an experimental unit tool to study collective association of coupled neurons. The circuit design is given according to the ionic currents of this model. The experimental results are compared with the theoretical prediction, leading to a good agreement between them, which therefore validate the circuit.

View Article and Find Full Text PDF

In this study, an experimental electronic neuron based on Morris-Lecar model is presented, able to become an experimental unit tool to study collective association of robust coupled neurons. The circuit design is given according to the ionic currents of this model. The experimental results are compared to the theoretical prediction, leading to validate this circuit.

View Article and Find Full Text PDF

Signals such as Complex Fractionated Atrial Electrograms (CFAE) are tracked during ablation procedures to locate the arrhythmical substrate regions. Most of CFAE classification tools use fractionation indexes. However, recordings from intracardiac catheter depend on electrode contact quality.

View Article and Find Full Text PDF

Cardiac arrhythmias are one of the most important death causes in the world. Compared to the numerical models, the experimental ones provide a more realistic tool to study the mechanisms of cardiac arrhythmias. The in vitro culture of cardiac cells developed on the Multi-Electrodes Array (MEA) constitutes a suitable model in this context.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is the most common cardiac arrhythmia but its proarrhythmic substrate remains unclear. Reentrant electrical activity in the atria may be responsible for AF maintenance. Over the last decade, different catheter ablation strategies targeting the electrical substrate of the left atrium have been developed in order to treat AF.

View Article and Find Full Text PDF

We study the nonlinear dynamics of a homogeneous DNA chain which is based on site-dependent finite stacking and pairing enthalpies. We introduce an extended nonlinear Schrödinger equation describing the dynamics of modulated wave in DNA model. We obtain envelope bright solitary waves with compact support as a solution.

View Article and Find Full Text PDF

Atrial fibrillation is the most encountered pathology of the heart rate. The reasons of its occurrence and its particular characteristics remain unknown, resulting from complex phenomena interaction. From these interactions emerges Complex Fractionated Atrial Electrograms (CFAE) which are useful for the ablation procedure.

View Article and Find Full Text PDF

In this paper, we investigate muscular fatigue. We propose a new fatigue index based on the continuous wavelet transform (CWT) and compare it with the standard fatigue indexes from literature. Fatigue indexes are all based on the electrical activity of muscles (electromyogram) acquired during an electrically stimulated contraction (ES).

View Article and Find Full Text PDF

This study investigates the existence of the pseudo complex fractionated atrial electrogram (CFAE) at cellular level. Our assumptions are based on the fact that CFAEs are linked to the generation of the spiral waves. These are created using a numerical model and an experimental model of in vitro culture of neonatal rats cardiac cells.

View Article and Find Full Text PDF

Experiments in vitro on a Microelectrode Array (MEA) platform show that electrical stimulation can provoke the generation of spiral waves in cardiac tissue. Nevertheless, the conditions leading to this artificial fibrillation state remain unclear. In order to have a better understanding of this phenomenon, a numerical simulation study has been conducted.

View Article and Find Full Text PDF

We present an electronical circuit modelling a FitzHugh-Nagumo neuron with a modified excitability. To characterize this basic cell, the bifurcation curves between stability with excitation threshold, bistability and oscillations are investigated. An electrical circuit is then proposed to realize a unidirectional coupling between two cells, mimicking an inter-neuron synaptic coupling.

View Article and Find Full Text PDF