Hydrogen, as an important clean energy source, plays a more and more crucial role in decarbonizing the planet and meeting the global climate challenge due to its high energy density and zero-emission. The demand for sustainable hydrogen is increasing drastically worldwide as driven by the global shift towards low-carbon energy solutions. Thermochemical catalysis process dominates hydrogen production at scale given its relatively mature technology and commercialization status, as well as the established manufacturing infrastructure.
View Article and Find Full Text PDFTo enhance the reaction kinetics without sacrificing activity in porous materials, one potential solution is to utilize the anisotropic distribution of pores and channels besides enriching active centers at the reactive surfaces. Herein, by designing a unique distribution of oriented pores and single crystalline array structures in the presence of abundant acid sites as demonstrated in the ZSM-5 nanorod arrays grown on monoliths, both enhanced dynamics and improved capacity are exhibited simultaneously in propene capture at low temperature within a short duration. Meanwhile, the ZSM-5 array also helps mitigate the long-chain HCs and coking formation due to the enhanced diffusion of reactants in and reaction products out of the array structures.
View Article and Find Full Text PDF