Publications by authors named "Binah O"

The ubiquitin-proteasome system (UPS) is an essential mechanism responsible for the selective degradation of substrate proteins via their conjugation with ubiquitin. Since cardiomyocytes have very limited self-renewal capacity, as they are prone to protein damage due to constant mechanical and metabolic stress, the UPS has a key role in cardiac physiology and pathophysiology. While altered proteasomal activity contributes to a variety of cardiac pathologies, such as heart failure and ischemia/reperfusion injury (IRI), the environmental cues affecting its activity are still unknown, and they are the focus of this work.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle degenerative disease caused by mutations in the gene, resulting in death by the end of the third decade of life at the latest. A key aspect of the DMD clinical phenotype is dilated cardiomyopathy, affecting virtually all patients by the end of the second decade of life. Furthermore, despite respiratory complications still being the leading cause of death, with advancements in medical care in recent years, cardiac involvement has become an increasing cause of mortality.

View Article and Find Full Text PDF
Article Synopsis
  • Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can be important for drug testing and understanding heart diseases, but their normal physiological functions need more investigation.
  • The study focuses on the automaticity of hiPSC-CMs, which is influenced by two types of "clocks" (Ca2+ and membrane clocks) and explores how they interact through local Ca2+ releases (LCRs).
  • Findings show that changes in the signaling pathways that regulate these clocks can significantly affect the beating rate and automaticity of hiPSC-CMs, indicating their potential similarity to natural pacemaker cells in the heart.
View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is caused by mutations in the gene and dilated cardiomyopathy (DCM) is a major cause of morbidity and mortality in DMD patients. We tested the hypothesis that DCM is caused by metabolic impairments by employing induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from four DMD patients; an adult male, an adult female, a 7-year-old (7y) male and a 13-year-old (13y) male, all compared to two healthy volunteers. To test the hypothesis, we measured the bioenergetics, metabolomics, electrophysiology, mitochondrial morphology and mitochondrial activity of CMs, using respirometry, LC-MS, patch clamp, electron microscopy (EM) and confocal microscopy methods.

View Article and Find Full Text PDF

Background: Patients with cardiomyopathy of Duchenne Muscular Dystrophy (DMD) are at risk of developing life-threatening arrhythmias, but the mechanisms are unknown. We aimed to determine the role of ion channels controlling cardiac excitability in the mechanisms of arrhythmias in DMD patients.

Methods: To test whether dystrophin mutations lead to defective cardiac Na1.

View Article and Find Full Text PDF

-related dilated cardiomyopathy is an inherited heart disease caused by mutations in the gene encoding for lamin A/C. The disease is characterized by left ventricular enlargement and impaired systolic function associated with conduction defects and ventricular arrhythmias. We hypothesized that -mutated patients' induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs) display electrophysiological abnormalities, thus constituting a suitable tool for deciphering the arrhythmogenic mechanisms of the disease, and possibly for developing novel therapeutic modalities.

View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSCs) were originally derived from adult somatic cells by ectopic expression of the stem cell transcription factors OCT3/4, SOX2, c-Myc, and KLF4. The characteristic features of iPSCs are similar to those of embryonic stem cells; they can be expanded indefinitely in vitro and differentiated into the three germ layers: endoderm, mesoderm, and ectoderm. The breakthrough discovery by Takahashi and Yamanaka that somatic cells can be "reprogrammed" to generate iPSCs has led to extensive use of iPSCs and their differentiated cells thereof, in diverse research areas, such as regenerative medicine, development, as well as establishment of disease-specific models, thus providing the platform for personalized patient-specific medicine.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is an X-linked disease affecting male and rarely adult heterozygous females, resulting in death by the late 20s to early 30s. Previous studies reported depressed left ventricular function in DMD patients which may result from deranged intracellular Ca -handling. To decipher the mechanism(s) underlying the depressed LV function, we tested the hypothesis that iPSC-CMs generated from DMD patients feature blunted positive inotropic response to β-adrenergic stimulation.

View Article and Find Full Text PDF

Cardiac levels of the signal transducer and activator of transcription factor-3 (STAT3) decline with age, and male but not female mice with a cardiomyocyte-specific STAT3 deficiency conditional knockout (CKO) display premature age-related heart failure associated with reduced cardiac capillary density. In the present study, isolated male and female CKO-cardiomyocytes exhibit increased prostaglandin (PG)-generating cyclooxygenase-2 (COX-2) expression. The PG-degrading hydroxyprostaglandin-dehydrogenase-15 (HPGD) expression is only reduced in male cardiomyocytes, which is associated with increased prostaglandin D2 (PGD2) secretion from isolated male but not female CKO-cardiomyocytes.

View Article and Find Full Text PDF

Over the years, numerous groups have employed human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) as a superb human-compatible model for investigating the function and dysfunction of cardiomyocytes, drug screening and toxicity, disease modeling and for the development of novel drugs for heart diseases. In this review, we discuss the broad use of iPSC-CMs for drug development and disease modeling, in two related themes. In the first theme-drug development, adverse drug reactions, mechanisms of cardiotoxicity and the need for efficient drug screening protocols-we discuss the critical need to screen old and new drugs, the process of drug development, marketing and Adverse Drug reactions (ADRs), drug-induced cardiotoxicity, safety screening during drug development, drug development and patient-specific effect and different mechanisms of ADRs.

View Article and Find Full Text PDF
Article Synopsis
  • Peripartum cardiomyopathy (PPCM) is a serious heart condition that affects women with no prior heart issues, and is linked to the 16 kDa-prolactin fragment that causes vascular damage and heart failure.
  • In a study comparing healthy postpartum women to those with PPCM, PAI-1 levels were significantly higher in PPCM patients at baseline but decreased after six months, coinciding with an improvement in heart function (LVEF).
  • The researchers found that increased miR-146a levels in PPCM patients correlated with elevated PAI-1 and was associated with higher NF-κB activation in endothelial cells, suggesting a role of PAI-1 in the disease's underlying mechanisms.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created induced pluripotent stem cells (iPSCs) from two DMD patients to study heart cell dysfunction, analyzing dystrophin expression and using various electrophysiological techniques to understand heart function.
  • * The study found that both male and female iPSC-derived heart cells exhibited significant electrical activity issues and irregular heartbeats, with specific differences in how they responded based on their genetic background, helping to explain cardiac problems associated with DMD.
View Article and Find Full Text PDF

Aims: Dilated cardiomyopathy (DCM), a myocardial disorder that can result in progressive heart failure and arrhythmias, is defined by ventricular chamber enlargement and dilatation, and systolic dysfunction. Despite extensive research, the pathological mechanisms of DCM are unclear mainly due to numerous mutations in different gene families resulting in the same outcome-decreased ventricular function. Titin (TTN)-a giant protein, expressed in cardiac and skeletal muscles, is an important part of the sarcomere, and thus TTN mutations are the most common cause of adult DCM.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle degenerative disease caused by mutations in the dystrophin gene. We generated induced pluripotent stem cells (iPSCs) from a 13-year-old male patient carrying a deletion mutation of exons 45-50; iPSCs were subsequently differentiated into cardiomyocytes. iPSCs exhibit expression of the pluripotent markers (SOX2, NANOG, OCT4), differentiation capacity into the three germ layers, normal karyotype, genetic identity to the skin biopsy dermal fibroblasts and the patient-specific dystrophin mutation.

View Article and Find Full Text PDF

The development of the reprogramming technology led to generation of induced Pluripotent Stem Cells (iPSC) from a variety of somatic cells. Ever since, fast growing knowledge of different efficient protocols enabled the differentiation of these iPSCs into different cells types utilized for disease modeling. Indeed, iPSC-derived cells have been increasingly used for investigating molecular and cellular pathophysiological mechanisms underlying inherited diseases.

View Article and Find Full Text PDF

Mutations in SCO2 are among the most common causes of COX deficiency, resulting in reduced mitochondrial oxidative ATP production capacity, often leading to hypertrophic cardiomyopathy (HCM). To date, none of the recent pertaining reports provide deep understanding of the SCO2 disease pathophysiology. To investigate the cardiac pathology of the disease, we were the first to generate induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) from SCO2-mutated patients.

View Article and Find Full Text PDF

Background: Mutations in the PRKAG2 gene encoding the γ-subunit of adenosine monophosphate kinase (AMPK) cause hypertrophic cardiomyopathy (HCM) and familial Wolff-Parkinson-White (WPW) syndrome. Patients carrying the R302Q mutation in PRKAG2 present with sinus bradycardia, escape rhythms, ventricular preexcitation, supraventricular tachycardia, and atrioventricular block. This mutation affects AMPK activity and increases glycogen storage in cardiomyocytes.

View Article and Find Full Text PDF

Culturing atrial cells leads to a loss in their ability to be externally paced at physiological rates and to maintain their shape. We aim to develop a culture method that sustains the shape of atrial cells along with their biophysical and bioenergetic properties in response to physiological pacing. We hypothesize that adding 2,3-Butanedione 2-monoxime (BDM), which inhibits contraction during the culture period, will preserve these biophysical and bioenergetic properties.

View Article and Find Full Text PDF

Background: Although multiple approaches have been used to create biological pacemakers in animal models, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have not been investigated for this purpose. We now report pacemaker function of iPSC-CMs in a canine model.

Methods And Results: Embryoid bodies were derived from human keratinocytes, their action potential characteristics determined, and their gene expression profiles and markers of differentiation identified.

View Article and Find Full Text PDF

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-provoked ventricular arrhythmia, which also manifests sinoatrial node (SAN) dysfunction. We recently showed that SK4 calcium-activated potassium channels are important for automaticity of cardiomyocytes derived from human embryonic stem cells. Here SK4 channels were identified in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from healthy and CPVT2 patients bearing a mutation in calsequestrin 2 (CASQ2-D307H) and in SAN cells from WT and CASQ2-D307H knock-in (KI) mice.

View Article and Find Full Text PDF

Following acute myocardial infarction (MI), early and successful reperfusion is the most effective strategy for reducing infarct size and improving the clinical outcome. However, immediate restoration of blood flow to the ischemic zone results in myocardial damage, defined as "reperfusion-injury". Whereas we previously reported that TVP1022 (the S-isomer of rasagiline, FDA-approved anti-Parkinson drug) decreased infarct size 24 h post ischemia reperfusion (I/R) in rats, in this study we investigated the chronic cardioprotective efficacy of TVP1022 14 days post-I/R.

View Article and Find Full Text PDF

Background: It is challenging to detect small nontransmural infarcts visually or automatically. As it is important to detect myocardial infarction (MI) at early stages, we tested the hypothesis that small nontransmural MI can be detected using speckle tracking echocardiography (STE) at the acute stage.

Methods: Minimal nontransmural infarcts were induced in 18 rats by causing recurrent ischemia-reperfusion of the left anterior descending (LAD) coronary artery, followed by a 30-min ligation and by reperfusion.

View Article and Find Full Text PDF

Background: Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs), only 3 types of action potentials (APs) exist: nodal-, atrial-, and ventricular-like.

Objectives: To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) During culture development a cardiac precursor cell is present that-depending on age-can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of a nodal phenotype, transient appearance of an atrial phenotype, evolution to a ventricular phenotype, and persistence of transitional phenotypes.

View Article and Find Full Text PDF

Background: Myocardial ischemia causes contractile dysfunction in ischemic, stunned, and tethered regions with larger infarcted zones having a negative prognostic impact on patients' outcomes. To distinguish the infarcted myocardium from the other regions, we investigated the diagnostic potential of circumferential strain (CS) and radial strain (RS) during the acute and chronic stages of myocardial infarction.

Methods: Ten pigs underwent 90-minute occlusion of the left anterior descending artery, followed by reperfusion.

View Article and Find Full Text PDF