An ideal tumor treatment strategy involves therapeutic approaches that can enhance the immunogenicity of the tumor microenvironment while simultaneously eliminating the primary tumor. A cholic acid-modified iridium(III) (Ir3) photosensitizer, targeted to the endoplasmic reticulum (ER), has been reported to exhibit potent type I and type II photodynamic therapeutic effects against triple-negative breast cancer (MDA-MB-231). This photosensitizer induces pyroptotic cell death mediated by gasdermin E (GSDME) through photodynamic means and enhances tumor immunotherapy.
View Article and Find Full Text PDFMetal copper complexes have attracted extensive attention as potential alternatives to platinum-based anticancer drugs due to their possible different modes of action. Herein, a new copper(II) gluconate complex, namely [Cu(DPQ)(Gluc)]·2HO (CuGluc, DPQ = pyrazino[2,3-f][1,10]phenanthroline), with good water-solubility and high anticancer activity was synthesized by using D-gluconic acid (Gluc-2H) as an auxiliary ligand. The complex was well characterized by single-crystal X-ray diffraction analysis, elemental analysis, molar conductivity, and Fourier transform infrared spectroscopy (FTIR).
View Article and Find Full Text PDFMitochondria-targeted photodynamic therapy (PDT) has recently been recognized as a promising strategy for effective cancer treatment. In this work, a mitochondria-targeted near-infrared (NIR) aggregation-induced emission (AIE)-active phosphorescent Ir(III) complex (Ir1) is reported with highly favourable mitochondria-targeted bioimaging and cancer PDT properties. Complex Ir1 has strong absorption in the visible light region (∼500 nm) and can effectively produce singlet oxygen (O) under green light (525 nm) irradiation.
View Article and Find Full Text PDF