Publications by authors named "Bin Men"

In this work, we proposed a green and cost-effective method to prepare a graphene-based hyper-cross-linked porous carbon composite (GN/HCPC) by one-pot carbonization of hyper-cross-linked polymer (HCP) and glucose. The composite combined the advantages of graphene (GN) and hyper-cross-linked porous carbon (HCPC), leading to high specific surface area (396.93 m/g) and large total pore volume (0.

View Article and Find Full Text PDF

An analytical method for separation and determination of thallium species in water using high-performance liquid chromatography with inductively coupled plasma mass spectrometry was developed. The composition and concentration of mobile phase, injection volume, and pH value were optimized respectively with an anion or cation exchange column. The results showed that Tl(I) and Tl(III) were effectively separated using anion exchange column Hamilton PRP-X100, with the mobile phase consisting of 200 mmol/L ammonium acetate and 10 mmol/L diethylenetriaminepentaacetic acid (pH = 4.

View Article and Find Full Text PDF

To improve the coagulation performances, new composite coagulants were used to treat different water samples. The results indicate that Ca has no significant effects on the removal efficiency for turbidity in the kaolin system. The residual aluminum decreased from 0.

View Article and Find Full Text PDF

Organic matter (OM) is an important component of sediment. Bioturbation/bioirrigation can remobilize OM and heavy metals that were previously buried in the sediment. The remobilization of buried organic matter, thallium (Tl), cadmium (Cd), copper (Cu) and zinc (Zn) from sediment was studied in a laboratory experiment with three organisms: tubificid, chironomid larvae and loach.

View Article and Find Full Text PDF

In order to ensure drinking water quality, three different Al-based coagulants [Al(SO)(AS), Al, Al] were used to treat water laden with different algae [(cyanobacteria), (green algae), (diatoms)]. Floc size, strength factor, and recovery factor under different conditions were measured to investigate the mechanisms in the coagulation-ultrafiltration process. The results indicated that the main mechanism in the coagulation process using Al or Al as coagulants was electrostatic patching and the main mechanism using AS was charge neutralization.

View Article and Find Full Text PDF

The wide application of nanoparticles will lead its release into the aquatic environment, which may alter the bioavailability and toxicity of other contaminants to aquatic organisms. This work aimed to study the effects of perfluorooctane sulfonate (PFOS), single-wall carbon nanotubes (SWCNT), and their mixture on PFOS accumulation, antioxidant defenses and acetylcholinesterase (AChE) activity in zebrafish. The fish was dissected after being exposed (24, 48, 72 and 96h) separately to PFOS, SWCNT and PFOS+SWCNT co-exposure.

View Article and Find Full Text PDF

Bioturbation/bioirrigation can affect the remobilization of metals from sediments. In this study, experiments were performed to examine the effect of bioturbation/bioirrigation by different organisms on cadmium (Cd), copper (Cu), zinc (Zn) and lead (Pb) releasing from the spiked sediment. The diffusive gradient in thin films technique (DGT) revealed that at the end of exposure time, the labile heavy metals concentrations in the pore water for all metal and organisms combinations except Cu and chironomid larvae were much lower than that in the control group.

View Article and Find Full Text PDF

Ferrate(VI) salt is an oxidant and coagulant for water and wastewater treatment. It is considered as a possible alternative method in greywater treatment. However, challenges have existed in putting ferrate(VI) technology into full-scale practice in water and wastewater treatment due to the instability of ferrate solution and high production cost of solid ferrate products.

View Article and Find Full Text PDF

The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals (OH) from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH. Hence, it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology. Due to the complex reaction system, the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating, and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies.

View Article and Find Full Text PDF

Adding activated carbon (AC) to sediment has been proposed as an in situ sediment remediation technique. To date, it is not clear whether this technique is effective in the treatment of heavy metal-contaminated sediment in the presence of bioturbators. In the present study, we compare the ability of granular-activated carbon (GAC) and powder-activated carbon (PAC) to reduce Cu, Zn, and Pb pore water concentrations at environmentally relevant concentrations in the absence and presence of Chironomid larvae.

View Article and Find Full Text PDF

Anaerobic/anoxic biodegradation of hydrocarbons offers an attractive approach to the removal of these compounds from polluted environments such as aquifers, aquatic sediments, submerged soils and subsurface soils. The application of nitrate was investigated to accelerate the degradation of gasoline components such as mono-aromatic hydrocarbons and total petroleum hydrocarbons (TPH) in soil by indigenous microorganisms under anoxic condition. The addition of nitrate had little effect on the degradation of mono-aromatic hydrocarbons m- & p-xylene, o-xylene, sec-butylbenzene and 1,2,4-trimethylbenzene, but facilitated the degradation of TPH (C6-C12) and mono-aromatic hydrocarbons toluene and ethylbenzene markedly.

View Article and Find Full Text PDF

Bioturbation can remobilize heavy metal in the sediments and may pose a risk for aquatic biota. The effects of bioturbation/bioirrigation by three different riverine organism types (Tubificid, Chironomid larvae, and Loach) on thallium release from contaminated sediment (10.0 ± 1.

View Article and Find Full Text PDF

The distributions of 41 polychlorinated biphenyls (PCBs) were determined in the aqueous phase, suspended particulate matter (SPM), and sediment of the Daliao River estuary in Liaodong Bay, Bohai Sea (China). The total PCB concentrations ranged from 5.51 to 40.

View Article and Find Full Text PDF

The chemical forms and ecological risk of As were characterized in the sediment of the Daliao River System (DRS), which has been affected by long-term intensive industrial, urban, and agricultural activities. Twenty-seven samples of surface sediment were collected and analyzed for total As content and that of its chemical forms. The results indicated that the average total As content in the sediment was 9.

View Article and Find Full Text PDF

Phthalic acid and its photochemical degradation has been determined in snow and rainwater samples collected during winters (2003-2010) in the Southeast of Massachusetts using capillary gas chromatography (GC) with flame ionization and mass spectrometric detection. Water samples were dried using a rotary evaporator and derivatized with a 14% BF(3)/methanol reagent before GC analysis. The developed method proved simple and accurate.

View Article and Find Full Text PDF

Nitroaromatic compounds are known to be hazardous to ecological and human health. To assess the status of nitroaromatic compounds contamination in the main rivers in the important industrial bases of the northeastern China, we collected water, suspended particulate matter (SPM) and sediment samples from 28 sites in the Daliao River watershed and analysed them for eight nitroaromatic compounds by gas chromatography. The total concentrations of eight nitrobenzenes in the water column including aqueous and SPM phases ranged from 740 to 15,828 ng L( - 1), with a mean concentration of 3,460 ng L( - 1).

View Article and Find Full Text PDF

The distributions of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in the aqueous phase, suspended particulate matter (SPM), sediment, and pore water of the Daliao River Estuary in Liaodong Bay, Bohai Sea (China). Total PAH concentrations ranged from 139.16 to 1717.

View Article and Find Full Text PDF