The exosome functions in the degradation of diverse RNA species, yet how it is negatively regulated remains largely unknown. Here, we show that NRDE2 forms a 1:1 complex with MTR4, a nuclear exosome cofactor critical for exosome recruitment, via a conserved MTR4-interacting domain (MID). Unexpectedly, NRDE2 mainly localizes in nuclear speckles, where it inhibits MTR4 recruitment and RNA degradation, and thereby ensures efficient mRNA nuclear export.
View Article and Find Full Text PDFNucleic Acids Res
September 2018
A significant fraction of mRNAs are degraded by the nuclear exosome in normal cells. Here, we studied where and when these exosome target mRNAs are sorted away from properly exported ones in the cells. We show that upon exosome inactivation, polyA RNAs are apparently accumulated in nuclear foci that are distinct from nuclear speckles (NSs), and provide several lines of evidence supporting that these polyA RNAs mainly correspond to accumulating exosome target mRNAs.
View Article and Find Full Text PDFBladder cancer is a challenging and fatal malignancy and the improvement in prognosis is limited over years. Deep understanding the mechanism of bladder cancer tumorigenesis and progression will help to discover novel and effective treatment strategies. In this study, we identify non-canonical IkB kinase TBK1 is up-regulated in bladder cancer tissue and cell lines.
View Article and Find Full Text PDFLow density lipoprotein receptor-related protein 1 (LRP1) C766T polymorphism (rs1799986) has been extensively investigated for Alzheimer's disease (AD) susceptibility. However, results in different studies have been contradictory. Therefore, we conducted a meta-analysis containing 6455 AD cases and 6304 controls from 26 independent case-control studies to determine whether there was an association between the LRP1 C766T polymorphism and AD susceptibility.
View Article and Find Full Text PDFThe exosome is a key RNA machine that functions in the degradation of unwanted RNAs. Here, we found that significant fractions of precursors and mature forms of mRNAs and long noncoding RNAs are degraded by the nuclear exosome in normal human cells. Exosome-mediated degradation of these RNAs requires its cofactor hMTR4.
View Article and Find Full Text PDF