Publications by authors named "Bin Gotoh"

Subacute sclerosing panencephalitis (SSPE) is a fatal neurodegenerative disease caused by measles virus (MV), which typically develops 7 to 10 years after acute measles. During the incubation period, MV establishes a persistent infection in the brain and accumulates mutations that generate neuropathogenic SSPE virus. The neuropathogenicity is closely associated with enhanced propagation mediated by cell-to-cell fusion in the brain, which is principally regulated by hyperfusogenic mutations of the viral F protein.

View Article and Find Full Text PDF

The Toll-like receptor (TLR)7- and TLR9-dependent signalling cascade is responsible for production of a large amount of alpha interferon by plasmacytoid dendritic cells upon viral infection. Here, we show that Middle East respiratory syndrome coronavirus (MERS-CoV) accessory protein ORF4b has the most potential among the MERS-CoV accessory proteins to inhibit the TLR7/9-signaling-dependent alpha interferon production. ORF4b protein, which has a bipartite nuclear localization signal, was found to bind to IKKα, a kinase responsible for phosphorylation of interferon regulatory factor (IRF)7.

View Article and Find Full Text PDF

Retinoic acid-inducible gene I (RIG-I) is a receptor that senses viral RNA and interacts with mitochondrial antiviral signaling (MAVS) protein, leading to the production of type I interferons and inflammatory cytokines to establish an antiviral state. This signaling axis is initiated by the K63-linked RIG-I ubiquitination, mediated by E3 ubiquitin ligases such as TRIM25. However, many viruses, including several members of the family and human respiratory syncytial virus (HRSV), a member of the family , escape the immune system by targeting RIG-I/TRIM25 signaling.

View Article and Find Full Text PDF

Subacute sclerosing panencephalitis (SSPE) is a rare progressive neurodegenerative disease caused by measles virus variants (SSPE viruses) that results in eventual death. Amino acid substitution(s) in the viral fusion (F) protein are key for viral propagation in the brain in a cell-to-cell manner, a specific trait of SSPE viruses, leading to neuropathogenicity. In this study, we passaged an SSPE virus in cultured human neuronal cells and isolated an adapted virus that propagated more efficiently in neuronal cells and exhibited increased cell-to-cell fusion.

View Article and Find Full Text PDF

Subacute sclerosing panencephalitis (SSPE) is a rare fatal neurodegenerative disease caused by a measles virus (MV) variant, SSPE virus, that accumulates mutations during long-term persistent infection of the central nervous system (CNS). Clusters of mutations identified around the matrix (M) protein in many SSPE viruses suppress productive infectious particle release and accelerate cell-cell fusion, which are features of SSPE viruses. It was reported, however, that these defects of M protein function might not be correlated directly with promotion of neurovirulence, although they might enable establishment of persistent infection.

View Article and Find Full Text PDF

We examined the pathogenicity of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in cynomolgus macaques for 28 days to establish an animal model of COVID-19 for the development of vaccines and antiviral drugs. Cynomolgus macaques infected with SARS-CoV-2 showed body temperature rises and X-ray radiographic pneumonia without life-threatening clinical signs of disease. A neutralizing antibody against SARS-CoV-2 and T-lymphocytes producing interferon (IFN)-γ specifically for SARS-CoV-2 N-protein were detected on day 14 in one of three macaques with viral pneumonia.

View Article and Find Full Text PDF

Respirovirus C protein blocks the type I interferon (IFN)-stimulated activation of the JAK-STAT pathway. It has been reported that C protein inhibits IFN-α-stimulated tyrosine phosphorylation of STATs, but the underlying mechanism is poorly understood. Here, we show that the C protein of Sendai virus (SeV), a member of the Respirovirus genus, binds to the IFN receptor subunit IFN-α/β receptor subunit (IFNAR)2 and inhibits IFN-α-stimulated tyrosine phosphorylation of the upstream receptor-associated kinases, JAK1 and TYK2.

View Article and Find Full Text PDF

To suppress virus multiplication, infected macrophages produce NO. However, it remains unclear how infecting viruses then overcome NO challenge. In the present study, we report the effects of accessory protein C from Sendai virus (SeV), a prototypical paramyxovirus, on NO output.

View Article and Find Full Text PDF

Inflammasomes play a key role in host innate immune responses to viral infection by caspase-1 (Casp-1) activation to facilitate interleukin-1β (IL-1β) secretion, which contributes to the host antiviral defense. The NLRP3 inflammasome consists of the cytoplasmic sensor molecule NLRP3, adaptor protein ASC, and effector protein pro-caspase-1 (pro-Casp-1). NLRP3 and ASC promote pro-Casp-1 cleavage, leading to IL-1β maturation and secretion.

View Article and Find Full Text PDF

The nonstructural protein NSs of severe fever with thrombocytopenia syndrome phlebovirus blocks type I interferon (IFN)-stimulated JAK-STAT signaling. However, there is continuing controversy as to whether NSs targets STAT1 or STAT2 or both for this blockade. The present study was designed to gain a further understanding of the blockade mechanism.

View Article and Find Full Text PDF

Human metapneumovirus (HMPV) has the ability to inhibit Toll-like receptor 7 (TLR7)- and TLR9-dependent alpha interferon (IFN-α) production by plasmacytoid dendritic cells (pDCs). However, the inhibition mechanism remains largely unknown. To identify viral proteins responsible for this inhibition, we performed a screening of HMPV open reading frames (ORFs) for the ability to block TLR7/9-dependent signaling reconstituted in HEK293T cells by transfection with myeloid differentiation factor 88 (MyD88), tumor necrosis factor receptor-associated factor 6 (TRAF6), IKKα, and IFN regulatory factor 7 (IRF7).

View Article and Find Full Text PDF

Necroptosis is a form of necrotic cell death that requires the activity of the death domain-containing kinase RIP1 and its family member RIP3. Necroptosis occurs when RIP1 is deubiquitinated to form a complex with RIP3 in cells deficient in the death receptor adapter molecule FADD or caspase-8. Necroptosis may play a role in host defense during viral infection as viruses like vaccinia can induce necroptosis while murine cytomegalovirus encodes a viral inhibitor of necroptosis.

View Article and Find Full Text PDF

The fusion (F) protein of measles virus performs refolding from the thermodynamically metastable prefusion form to the highly stable postfusion form via an activated unstable intermediate stage, to induce membrane fusion. Some amino acids involved in the fusion regulation cluster in the heptad repeat B (HR-B) domain of the stalk region, among which substitution of residue 465 by various amino acids revealed that fusion activity correlates well with its side chain length from the Cα (P<0.01) and van der Waals volume (P<0.

View Article and Find Full Text PDF

The fusion (F) protein of measles virus mediates membrane fusion. In this study, we investigated the molecular basis of the cell-cell fusion activity of the F protein. The N465H substitution in the heptad repeat B domain of the stalk region of the F protein eliminates this activity, but an additional mutation in the DIII domain of the head region - N183D, F217L, P219S, I225T or G240R - restores cell-cell fusion.

View Article and Find Full Text PDF

Paramyxovirus C protein targets the host interferon (IFN) system for virus immune evasion. To identify its unknown anti-IFN activity, we examined the effect of Sendai virus C protein on activation of the IFN-α promoter via various signaling pathways. This study uncovers a novel ability of C protein to block Toll-like receptor (TLR) 7- and TLR9-dependent IFN-α induction, which is specific to plasmacytoid dendritic cells.

View Article and Find Full Text PDF

Paramyxovirus V proteins block Toll-like receptor 7 (TLR7)- and TLR9-dependent signaling leading to alpha interferon production. Our recent study has provided evidence that interaction of the V proteins with IRF7 is important for the blockade. However, the detailed mechanisms still remain unclear.

View Article and Find Full Text PDF

Actin filament (F-actin) is believed to be involved in measles virus (MV) assembly as a cellular factor, but the precise roles remain unknown. Here we show that Phe at position 50 of the MV matrix (M) protein is important for its association with F-actin, through which the function of the M protein is regulated. In plasmid-expressed or MV-infected cells, a coimmunoprecipitation study revealed that the wild-type M (M-WT) protein associated strongly with F-actin but only weakly with the cytoplasmic tail of the hemagglutinin (H) protein.

View Article and Find Full Text PDF

Background: Human metapneumovirus (HMPV) is a common cause of respiratory diseases in persons of all ages. Because of its slow replication and weak cytopathic effect in cultured cells, conventional neutralization assays for HMPV require around one week for completion.

Objectives: The purpose of this study is to establish a rapid neutralization assay based on a recombinant virus expressing Renilla luciferase (Rluc).

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDCs) do not produce alpha interferon (IFN-α) unless viruses cause a systemic infection or overcome the first-line defense provided by conventional DCs and macrophages. We show here that even paramyxoviruses, whose infections are restricted to the respiratory tract, have a V protein able to prevent Toll-like receptor 7 (TLR7)- and TLR9-dependent IFN-α induction specific to pDCs. Mutational analysis of human parainfluenza virus type 2 demonstrates that the second Trp residue of the Trp-rich motif (Trp-X(3)-Trp-X(9)-Trp) in the C-terminal domain unique to V, a determinant for IRF7 binding, is critical for the blockade of TLR7/9-dependent signaling.

View Article and Find Full Text PDF

M2-2 protein of human metapneumovirus (HMPV) is encoded by one of two overlapping open reading frames within M2 mRNA. The precise function of HMPV M2-2 protein remains unknown. We here examined effect of M2-2 protein on HMPV transcription and replication using a minigenome construct and monitoring luciferase reporter gene expression.

View Article and Find Full Text PDF

Sendai virus (SeV) C protein is a multifunctional protein that plays important roles in regulating viral genome replication and transcription, antagonizing the host interferon system, suppressing virus-induced apoptosis, and facilitating virus assembly and budding. We here report a novel role of SeV C protein, the limitation of double-stranded RNA (dsRNA) generation for maintaining the rate of protein synthesis in infected cells. It was found that the intracellular protein synthesis rate was maintained even after wild-type (wt) SeV infection, but markedly suppressed following C-knockout SeV infection.

View Article and Find Full Text PDF

The paramyxovirus P gene encodes accessory proteins antagonistic to interferon (IFN). Viral proteins responsible for the IFN antagonism, however, are distinct among paramyxoviruses. Here we determine bovine parainfluenza virus type 3 (bPIV3) IFN antagonists that suppress IFN-beta production, and investigate the underlying molecular mechanism.

View Article and Find Full Text PDF

Interferon is important for anti-viral defense of the host. The E2, NS3/4A, and NS5A proteins of hepatitis C virus (HCV) have recently been reported to confront anti-viral action induced by interferon. However, roles of the individual HCV proteins in anti-interferon action are still not well understood.

View Article and Find Full Text PDF

We here report a molecular basis for downregulation of interferon (IFN)-beta production by V and C proteins of Sendai virus (SeV). The infection of HeLa cells with SeV poorly induced IFN-beta even if the expression of C/C' was disrupted. In contrast, when the expression of C/C'/Y1/Y2 or V/W was disrupted, SeV infection strongly induced IFN-beta production and significantly activated the interferon regulatory factor (IRF)-3 pathway.

View Article and Find Full Text PDF

Sendai virus C protein interacts with the signal transducer and activator of transcription (STAT) 1. This interaction is believed to be essential for the Sendai virus inhibition of the interferon (IFN) response. We here analyzed C(F170S) (a C protein mutant with the F170S mutation) with no STAT1-binding ability.

View Article and Find Full Text PDF