α-Tocotrienol is one of the major constituents of palm oil. It is a well-known antioxidant and cholesterol-lowering neuroprotectant. To prevent the initiation of Alzheimer's like symptoms, much attention has been shifted to the major role played by antioxidants.
View Article and Find Full Text PDFClinical and experimental evidences reveal that excess exposure to manganese is neurotoxic and leads to cellular damage. However, the mechanism underlying manganese neurotoxicity remains poorly understood but oxidative stress has been implicated to be one of the key pathophysiological features related to it. The present study investigates the effects associated with manganese induced toxicity in rats and further to combat these alterations with a well-known antioxidant N-acetylcysteine which is being used in mitigating the damage by its radical scavenging activity.
View Article and Find Full Text PDFThe aggregation of Aβ plays a major role in the progression of Alzheimer's disease (AD) and induces neuroinflammation, neurodegeneration and cognitive decline. Recent studies have shown that the soluble aggregates of Aβ are the major culprits in the development of these aberrations inside the brain. In this study, we investigated the neuroprotective potential of carbenoxolone (Cbx), which has been found to possess anti-inflammatory and nootropic properties.
View Article and Find Full Text PDFPathogenesis of Parkinson's disease (PD) specifically involves the degeneration of dopaminergic neurons in the substantia nigra region, which mainly begun with the overwhelmed oxidative stress and neuroinflammation. Considering the antioxidant and other pharmacological properties, Eclipta alba needs to be exploited for its possible neuroprotective efficacy against PD and other neurological disorders. Therefore, the current study was conducted to exemplify the remedial effects of hydro-alcoholic extract of E.
View Article and Find Full Text PDFBrain contains the highest lipid content involved in various structural and physiological activities such as structural development, neurogenesis, synaptogenesis, signal transduction and myelin sheath formation. Lipids bilayer is essential to maintain the structural integrity for the physiological functions of protein. Impairments in lipid metabolism and its composition can lead to the progression of various brain ailments such as neurodegenerative and neuropsychiatric disorders.
View Article and Find Full Text PDFThe equilibrium between cerebral production and clearance of Aβ is maintained either by the active removal through blood-brain barrier or by the uptake and degradation through ubiquitin-proteasome system (UPS) and autophagy. The dysfunction of UPS and dysregulation of molecular chaperones such as heat shock proteins (HSPs) is well correlated with the progression of Alzheimer's disease (AD). Therefore, the restoration of heat shock system and UPS appears to be an effective approach to maintain the Aβ homeostasis.
View Article and Find Full Text PDFProtein misfolding and aggregation of amyloid beta (Aβ) peptide, as well as formation of neurofibrillary tangles (NFTs) are the signature hallmarks of Alzheimer's disease (AD) pathology. To prevent this, molecular chaperones come into play as they facilitate the refolding of the misfolded proteins and cell protection under stress. Here, we have evaluated the possible effects of Ginkgo biloba (GBE) against aggregation of the Aβ through activation of heat shock proteins (HSPs) in the Aluminium (Al) induced AD based model.
View Article and Find Full Text PDFSeveral mechanisms are involved in the loss of cellular integrity and tissue destructions in various brain regions during ischemic insult. The affected brain employs various self-repair mechanisms during the poststroke recovery. Therefore, the current study involves time course changes in different brain regions following ischemia in terms of inflammation, oxidative stress and apoptosis for which a bilateral common carotid arteries occlusion model was chosen.
View Article and Find Full Text PDFExtensive use of aluminum (Al) in industry, cooking utensils, and wrapping or freezing the food items, due to its cheapness and abundance in the environment, has become a major concern. Growing evidence supports that environmental pollutant Al promotes the aggregation of amyloid beta (Aβ) in the brain, which is the main pathological marker of Alzheimer's disease (AD). Further, AD- and Al-induced neurotoxic effects are more common among women following reproductive senescence due to decline in estrogen.
View Article and Find Full Text PDFA majority of the neurodegenerative disorders including Alzheimer's disease are untreatable and occur primarily due to aging and rapidly changing lifestyles. The rodent Alzheimer's disease models are critical for investigating the underlying disease pathology and screening of novel therapeutic targets in preclinical settings. We aimed to characterize the stemness properties of human umbilical cord blood (hUCB) derived lineage-negative (Lin-) stem cells based on CD34 and CD117 expression as well as surface morphology using flow cytometry and scanning electron microscopy, respectively.
View Article and Find Full Text PDFThe characteristic feature of Alzheimer's disease (AD) is the deposition of amyloid beta inside the brain mainly consisting of Aβ 40 and 42 aggregates. Soluble aggregates of Aβ 42 are reported to be more toxic and exert their neurotoxicity by the induction of oxidative damage and cognitive deficits such as anxiety-like behavior. These alterations emerge due to the induction of gap junction communication through increased activity and expression of connexins such as connexin43 (Cx43) leading to the release of small neurotoxic molecules.
View Article and Find Full Text PDFBlockage along with sudden restoration of blood following ischemia, results in several cascading events, such as a massive ROS production which plays an important role in the pathophysiology of ischemia. NADPH oxidase complex in mitochondria complex is believed to be the major source for ROS production. The present study explores the therapeutic potential of apocynin, an NADPH oxidase inhibitor in attenuating the ROS production, and the resultant neuroinflammation and mitochondrial injury during cerebral ischemia in rats.
View Article and Find Full Text PDFParkinson's disease (PD) pathology is characterized by the abnormal accumulation and aggregation of the pre-synaptic protein α-synuclein in the dopaminergic neurons as Lewy bodies (LBs). Curcumin, which plays a neuroprotective role in various animal models of PD, was found to directly modulate the aggregation of α-synuclein in in vitro as well as in in vivo studies. While curcumin has been shown to exhibit strong anti-oxidant and anti-inflammatory properties, there are a number of other possible mechanisms by which curcumin may alter α-synuclein aggregation which still remains obscure.
View Article and Find Full Text PDFInflammopharmacology
February 2018
Background: Despite the immense neuromodulatory potentials of Ginkgo biloba extract as a memory enhancer, its underlying mechanism seems inadequate particularly with regard to its anti-inflammatory properties.
Aim: The objective of the present study is to investigate the protective potentials of Ginkgo biloba extract (GBE) against hippocampal neuronal injury induced by trimethyltin (TMT), a potent neurotoxicant.
Methods: Male SD rats were administered trimethyltin (8.
Background: The major hallmark of Alzheimer's disease (AD) is the formation of amyloid aggregates, which are formed due to improper folding of proteins leading to the aggregation of amyloid beta (Aβ) 42 peptide. Inhibition of Aβ 42 aggregation using a drug such as carbenoxolone (Cbx), which has already been stated as neuroprotective, appears to be an effective approach against AD.
Objective: The present study was designed to investigate the anti-fibrillation activity of Cbx against the Aβ 42 aggregation.
Various studies have indicated a lower incidence and prevalence of neurological conditions in people consuming curcumin. The ability of curcumin to target multiple cascades, simultaneously, could be held responsible for its neuroprotective effects. The present study was designed to investigate the potential of curcumin in minimizing microglia-mediated damage in lipopolysaccharide (LPS) induced model of PD.
View Article and Find Full Text PDFObjectives: Amyloid-beta (Aβ) peptide deposition into insoluble plaques is a pathological hallmark of Alzheimer's disease (AD), but soluble oligomeric Aβ is considered to be more potent and has been hypothesized to directly impair learning and memory. Also, evidences from some clinical studies indicated that Aβ oligomer formation is the major cause for early AD onset. However, the biochemical mechanism involved in the oligomer-induced toxicity is not very well addressed.
View Article and Find Full Text PDFAlzheimer's disease (AD) is one of the most common causes of dementia. Despite several decades of research in AD, there is no standard disease- modifying therapy available and currentlyapproved drugs provide only symptomatic relief. Stem cells hold immense potential to regenerate damaged tissues and are currently tested in some brain-related disorders, such as AD, amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD).
View Article and Find Full Text PDFParkinson's disease (PD), is an age-related, progressive neurodegenerative disorder that affects movement and is characterized by the loss of dopaminergic neurons in the nigrostriatal region. Although the clinical and pathological features of PD are complex, recent studies have indicated that microglial NADPH oxidase play a key role in its pathology. A little information is available regarding the role of apocyanin, an NADPH oxidase inhibitor, in ameliorating α-synuclein aggregation and neurobehavioral consequences of PD.
View Article and Find Full Text PDFAluminium (Al) is neurotoxic primarily because of its interference with biological enzymes in key mechanisms of metabolic pathways. Mitochondria being a major site of reactive oxygen species (ROS) production, it seems that the oxidative damage to mitochondrial proteins may underlie the pathogenesis of Al induced neurodegeneration. The present study investigates the effectiveness of the anti-oxidant property of lazaroids (U-74500A), a known lipid peroxidation inhibitor as neuroprotective agent against Al induced neurotoxicity.
View Article and Find Full Text PDFMicroglia-associated inflammatory processes have been strongly implicated in the development and progression of Parkinson's disease (PD). Specifically, microglia are activated in response to lipopolysaccharide (LPS) and become chronic source of cytokines and reactive oxygen species (ROS) production. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex is responsible for extracellular as well as intracellular production of ROS by microglia and its expression is upregulated in PD.
View Article and Find Full Text PDFIntroduction: Primary pathology underlying Parkinson's disease (PD) is the loss of dopaminergic neurons in the substantia nigra (SN). A variety of genetic and environmental factors underlie this loss of dopaminergic neurons. However, recent studies have highlighted the role of elevated oxidative stress and the pro-inflammatory responses contributing to or exacerbating the nigrostriatal degeneration.
View Article and Find Full Text PDFUncontrolled cell proliferation is the hallmark of cancer, and cancer cells have typically acquired damage to genes that directly regulate their cell cycles. The synthesis of DNA onto the end of chromosome during the replicative phase of cell cycle by telomerase may be necessary for unlimited proliferation of cells. Telomerase, a ribonucleoprotein enzyme is considered as a universal therapeutic target of cancer because of its preferential expression in cancer cells and its presence in 90 % of tumors.
View Article and Find Full Text PDF