Publications by authors named "Billy K Poon"

Cryo-EM and X-ray crystallography provide crucial experimental data for obtaining atomic-detail models of biomacromolecules. Refining these models relies on library-based stereochemical restraints, which, in addition to being limited to known chemical entities, do not include meaningful noncovalent interactions relying solely on nonbonded repulsions. Quantum mechanical (QM) calculations could alleviate these issues but are too expensive for large molecules.

View Article and Find Full Text PDF

The interpretation of cryo-EM maps often includes the docking of known or predicted structures of the components, which is particularly useful when the map resolution is worse than 4 Å. Although it can be effective to search the entire map to find the best placement of a component, the process can be slow when the maps are large. However, frequently there is a well-founded hypothesis about where particular components are located.

View Article and Find Full Text PDF

Advances in machine learning have enabled sufficiently accurate predictions of protein structure to be used in macromolecular structure determination with crystallography and cryo-electron microscopy data. The Phenix software suite has AlphaFold predictions integrated into an automated pipeline that can start with an amino acid sequence and data, and automatically perform model-building and refinement to return a protein model fitted into the data. Due to the steep technical requirements of running AlphaFold efficiently, we have implemented a Phenix-AlphaFold webservice that enables all Phenix users to run AlphaFold predictions remotely from the Phenix GUI starting with the official 1.

View Article and Find Full Text PDF

Artificial intelligence-based protein structure prediction methods such as AlphaFold have revolutionized structural biology. The accuracies of these predictions vary, however, and they do not take into account ligands, covalent modifications or other environmental factors. Here, we evaluate how well AlphaFold predictions can be expected to describe the structure of a protein by comparing predictions directly with experimental crystallographic maps.

View Article and Find Full Text PDF

Neutron diffraction is one of the three crystallographic techniques (X-ray, neutron and electron diffraction) used to determine the atomic structures of molecules. Its particular strengths derive from the fact that H (and D) atoms are strong neutron scatterers, meaning that their positions, and thus protonation states, can be derived from crystallographic maps. However, because of technical limitations and experimental obstacles, the quality of neutron diffraction data is typically much poorer (completeness, resolution and signal to noise) than that of X-ray diffraction data for the same sample.

View Article and Find Full Text PDF

This chapter discusses the use of diffraction simulators to improve experimental outcomes in macromolecular crystallography, in particular for future experiments aimed at diffuse scattering. Consequential decisions for upcoming data collection include the selection of either a synchrotron or free electron laser X-ray source, rotation geometry or serial crystallography, and fiber-coupled area detector technology vs. pixel-array detectors.

View Article and Find Full Text PDF

Experimental structure determination can be accelerated with artificial intelligence (AI)-based structure-prediction methods such as AlphaFold. Here, an automatic procedure requiring only sequence information and crystallographic data is presented that uses AlphaFold predictions to produce an electron-density map and a structural model. Iterating through cycles of structure prediction is a key element of this procedure: a predicted model rebuilt in one cycle is used as a template for prediction in the next cycle.

View Article and Find Full Text PDF

In macromolecular crystallographic structure refinement, ligands present challenges for the generation of geometric restraints due to their large chemical variability, their possible novel nature and their specific interaction with the binding pocket of the protein. Quantum-mechanical approaches are useful for providing accurate ligand geometries, but can be plagued by the number of minima in flexible molecules. In an effort to avoid these issues, the Quantum Mechanical Restraints (QMR) procedure optimizes the ligand geometry in situ, thus accounting for the influence of the macromolecule on the local energy minima of the ligand.

View Article and Find Full Text PDF

Cryo-EM observation of biological samples enables visualization of sample heterogeneity, in the form of discrete states that are separable, or continuous heterogeneity as a result of local protein motion before flash freezing. Variability analysis of this continuous heterogeneity describes the variance between a particle stack and a volume, and results in a map series describing the various steps undertaken by the sample in the particle stack. While this observation is absolutely stunning, it is very hard to pinpoint structural details to elements of the maps.

View Article and Find Full Text PDF

AlphaFold has recently become an important tool in providing models for experimental structure determination by X-ray crystallography and cryo-EM. Large parts of the predicted models typically approach the accuracy of experimentally determined structures, although there are frequently local errors and errors in the relative orientations of domains. Importantly, residues in the model of a protein predicted by AlphaFold are tagged with a predicted local distance difference test score, informing users about which regions of the structure are predicted with less confidence.

View Article and Find Full Text PDF

Machine-learning prediction algorithms such as AlphaFold and RoseTTAFold can create remarkably accurate protein models, but these models usually have some regions that are predicted with low confidence or poor accuracy. We hypothesized that by implicitly including new experimental information such as a density map, a greater portion of a model could be predicted accurately, and that this might synergistically improve parts of the model that were not fully addressed by either machine learning or experiment alone. An iterative procedure was developed in which AlphaFold models are automatically rebuilt on the basis of experimental density maps and the rebuilt models are used as templates in new AlphaFold predictions.

View Article and Find Full Text PDF

Advancements in x-ray free-electron lasers on producing ultrashort, ultrabright, and coherent x-ray pulses enable single-shot imaging of fragile nanostructures, such as superfluid helium droplets. This imaging technique gives unique access to the sizes and shapes of individual droplets. In the past, such droplet characteristics have only been indirectly inferred by ensemble averaging techniques.

View Article and Find Full Text PDF

The field of electron cryomicroscopy (cryo-EM) has advanced quickly in recent years as the result of numerous technological and methodological developments. This has led to an increase in the number of atomic structures determined using this method. Recently, several tools for the analysis of cryo-EM data and models have been developed within the Phenix software package, such as phenix.

View Article and Find Full Text PDF

Diffraction (X-ray, neutron and electron) and electron cryo-microscopy are powerful methods to determine three-dimensional macromolecular structures, which are required to understand biological processes and to develop new therapeutics against diseases. The overall structure-solution workflow is similar for these techniques, but nuances exist because the properties of the reduced experimental data are different. Software tools for structure determination should therefore be tailored for each method.

View Article and Find Full Text PDF

This letter announces that PDBx/mmCIF format files will become mandatory for crystallographic depositions to the Protein Data Bank (PDB).

View Article and Find Full Text PDF

Fluctuation X-ray scattering (FXS) is an emerging experimental technique in which solution scattering data are collected using X-ray exposures below rotational diffusion times, resulting in angularly anisotropic X-ray snapshots that provide several orders of magnitude more information than traditional solution scattering data. Such experiments can be performed using the ultrashort X-ray pulses provided by a free-electron laser source, allowing one to collect a large number of diffraction patterns in a relatively short time. Here, we describe a test data set for FXS, obtained at the Linac Coherent Light Source, consisting of close to 100 000 multi-particle diffraction patterns originating from approximately 50 to 200 Paramecium Bursaria Chlorella virus particles per snapshot.

View Article and Find Full Text PDF

Recent advances in the field of electron cryomicroscopy (cryo-EM) have resulted in a rapidly increasing number of atomic models of biomacromolecules that have been solved using this technique and deposited in the Protein Data Bank and the Electron Microscopy Data Bank. Similar to macromolecular crystallography, validation tools for these models and maps are required. While some of these validation tools may be borrowed from crystallography, new methods specifically designed for cryo-EM validation are required.

View Article and Find Full Text PDF

This article describes the implementation of real-space refinement in the phenix.real_space_refine program from the PHENIX suite. The use of a simplified refinement target function enables very fast calculation, which in turn makes it possible to identify optimal data-restraint weights as part of routine refinements with little runtime cost.

View Article and Find Full Text PDF

Often similar structures need to be compared to reveal local differences throughout the entire model or between related copies within the model. Therefore, a program to compare multiple structures and enable correction any differences not supported by the density map was written within the Phenix framework (Adams et al., Acta Cryst 2010; D66:213-221).

View Article and Find Full Text PDF

The crystallographic maps that are routinely used during the structure-solution workflow are almost always model-biased because model information is used for their calculation. As these maps are also used to validate the atomic models that result from model building and refinement, this constitutes an immediate problem: anything added to the model will manifest itself in the map and thus hinder the validation. OMIT maps are a common tool to verify the presence of atoms in the model.

View Article and Find Full Text PDF

Femtosecond X-ray pulses from X-ray free-electron laser sources make it feasible to conduct room-temperature solution scattering experiments far below molecular rotational diffusion timescales. Owing to the ultra-short duration of each snapshot in these fluctuation scattering experiments, the particles are effectively frozen in space during the X-ray exposure. In contrast to standard small-angle scattering experiments, the resulting scattering patterns are anisotropic.

View Article and Find Full Text PDF

A fluctuation X-ray scattering experiment has been carried out on platinum-coated gold nanoparticles randomly oriented on a substrate. A complete algorithm for determining the electron density of an individual particle from diffraction patterns of many particles randomly oriented about a single axis is demonstrated. This algorithm operates on angular correlations among the measured intensity distributions and recovers the angular correlation functions of a single particle from measured diffraction patterns.

View Article and Find Full Text PDF

Ultrashort X-ray pulses from free-electron laser X-ray sources make it feasible to conduct small- and wide-angle scattering experiments on biomolecular samples in solution at sub-picosecond timescales. During these so-called fluctuation scattering experiments, the absence of rotational averaging, typically induced by Brownian motion in classic solution-scattering experiments, increases the information content of the data. In order to perform shape reconstruction or structure refinement from such data, it is essential to compute the theoretical profiles from three-dimensional models.

View Article and Find Full Text PDF

Constructing a model lattice to fit the observed Bragg diffraction pattern is straightforward for perfect samples, but indexing can be challenging when artifacts are present, such as poorly shaped spots, split crystals giving multiple closely aligned lattices and outright superposition of patterns from aggregated microcrystals. To optimize the lattice model against marginal data, refinement can be performed using a subset of the observations from which the poorly fitting spots have been discarded. Outliers are identified by assuming a Gaussian error distribution for the best-fitting spots and points diverging from this distribution are culled.

View Article and Find Full Text PDF

Up to 2% of X-ray structures in the Protein Data Bank (PDB) potentially fit into a higher symmetry space group. Redundant protein chains in these structures can be made compatible with exact crystallographic symmetry with minimal atomic movements that are smaller than the expected range of coordinate uncertainty. The incidence of problem cases is somewhat difficult to define precisely, as there is no clear line between underassigned symmetry, in which the subunit differences are unsupported by the data, and pseudosymmetry, in which the subunit differences rest on small but significant intensity differences in the diffraction pattern.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session12d3dtln1d06tsk2rgesh834ogs5g6bs): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once