Inflammation inhibits normal lung morphogenesis in preterm infants. Soluble inflammatory mediators present in the lungs of patients developing bronchopulmonary dysplasia disrupt expression of multiple genes critical for development. However, the mechanisms linking innate immune signaling and developmental programs are not clear.
View Article and Find Full Text PDFBronchopulmonary dysplasia (BPD) is a frequent complication of preterm birth. This chronic lung disease results from arrested saccular airway development and is most common in infants exposed to inflammatory stimuli. In experimental models, inflammation inhibits expression of fibroblast growth factor-10 (FGF-10) and impairs epithelial-mesenchymal interactions during lung development; however, the mechanisms connecting inflammatory signaling with reduced growth factor expression are not yet understood.
View Article and Find Full Text PDFInositol is essential in eukaryotes, and must be imported or synthesized. Inositol biosynthesis in Saccharomyces cerevisiae is controlled by three non-essential genes that make up the inositol regulon: ScINO2 and ScINO4, which together encode a heterodimeric transcriptional activator, and ScOPI1, which encodes a transcriptional repressor. ScOpi1p inhibits the ScIno2-ScIno4p activator in response to extracellular inositol levels.
View Article and Find Full Text PDF