Publications by authors named "Billy Hudson"

Diabetic complications present a serious health problem. Functional damage to proteins due to post-translational modifications by glycoxidation reactions is a known factor contributing to pathology. Extracellular proteins are especially vulnerable to diabetic damage because robust antioxidant defenses are lacking outside the cell.

View Article and Find Full Text PDF

The collagen IV (Col-IV) scaffold, the major constituent of the glomerular basement membrane (GBM), is a critical component of the kidney glomerular filtration barrier. In Alport syndrome, affecting millions of people worldwide, over two thousand genetic variants occur in the COL4A3, COL4A4, and COL4A5 genes that encode the Col-IV scaffold. Variants cause loss of scaffold, a suprastructure that tethers macromolecules, from the GBM or assembly of a defective scaffold, causing hematuria in nearly all cases, proteinuria, and often progressive kidney failure.

View Article and Find Full Text PDF

Collagen IV is a primordial component of basement membranes, a specialized form of extracellular matrix that enabled multi-cellular epithelial tissues. In mammals, collagen IV assembles from a family of six α-chains (α1 to α6), encoded by six genes (COL4A1 to COL4A6), into three distinct scaffolds: the α121, the α345 and a mixed scaffold containing both α121 and α565. The six mammalian COL4A genes occur in pairs that occur in a head-to-head arrangement on three distinct chromosomes.

View Article and Find Full Text PDF

Collagen IV is an essential structural protein in all metazoans. It provides a scaffold for the assembly of basement membranes, a specialized form of extracellular matrix, which anchors and signals cells and provides microscale tensile strength. Defective scaffolds cause basement membrane destabilization and tissue dysfunction.

View Article and Find Full Text PDF

Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues-a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as collagen IV, collagen IV, and collagen IV. Chloride ions play a pivotal role in scaffold assembly, based on studies of NC1 hexamers from mammalian tissues.

View Article and Find Full Text PDF

Peroxidasin (PXDN) is an extracellular peroxidase, which generates hypobromous acid to form sulfilimine cross-links within collagen IV networks. We have previously demonstrated that mouse and human renal basement membranes (BM) are enriched in bromine due to PXDN-dependent post-translational bromination of protein tyrosine residues. The goal of the present study was identification of specific brominated sites within renal BM.

View Article and Find Full Text PDF

Collagen superfamily of proteins is a major component of the extracellular matrix. Defects in collagens underlie the cause of nearly 40 human genetic diseases in millions of people worldwide. Pathogenesis typically involves genetic alterations of the triple helix, a hallmark structural feature that bestows exceptional mechanical resistance to tensile forces and a capacity to bind a plethora of macromolecules.

View Article and Find Full Text PDF

Purpose Of Review: In Alport syndrome, over 1,700 genetic variants in the COL4A3, COL4A4, and COL4A5 genes cause the absence or malfunctioning of the collagen IVα345 scaffold - an essential component of the glomerular basement membrane (GBM). Therapies are limited to treatment with Angiotensin-Converting enzyme (ACE) inhibitors to slow progression of the disease. Here, we review recent progress in therapy development to replace the scaffold or restore its function.

View Article and Find Full Text PDF

Extracellular matrix mechanics influence diverse cellular functions, yet surprisingly little is known about the mechanical properties of their constituent collagen proteins. In particular, network-forming collagen IV, an integral component of basement membranes, has been far less studied than fibril-forming collagens. A key feature of collagen IV is the presence of interruptions in the triple-helix-defining (Gly-X-Y) sequence along its collagenous domain.

View Article and Find Full Text PDF

Our recent work identified a genetic variant of the α345 hexamer of the collagen IV scaffold that is present in patients with glomerular basement membrane diseases, Goodpasture's disease (GP) and Alport syndrome (AS), and phenocopies of AS in knock-in mice. To understand the context of this "Zurich" variant, an 8-amino acid appendage, we developed a construct of the WT α345 hexamer using the single-chain NC1 trimer technology, which allowed us to solve a crystal structure of this key connection module. The α345 hexamer structure revealed a ring of 12 chloride ions at the trimer-trimer interface, analogous to the collagen α121 hexamer, and the location of the 170 AS variants.

View Article and Find Full Text PDF

We identified a genetic variant, an 8-residue appendage, of the α345 hexamer of collagen IV present in patients with glomerular basement membrane diseases, Goodpasture's disease and Alport syndrome, and determined the long-awaited crystal structure of the hexamer. We sought to elucidate how variants cause glomerular basement membrane disease by exploring the mechanism of the hexamer assembly. Chloride ions induced in vitro hexamer assembly in a composition-specific manner in the presence of equimolar concentrations of α3, α4, and α5 NC1 monomers.

View Article and Find Full Text PDF

Diseases of the glomerular basement membrane (GBM), such as Goodpasture's disease (GP) and Alport syndrome (AS), are a major cause of chronic kidney failure and an unmet medical need. Collagen IV is an important architectural element of the GBM that was discovered in previous research on GP and AS. How this collagen enables GBM to function as a permselective filter and how structural defects cause renal failure remain an enigma.

View Article and Find Full Text PDF

Bromine and peroxidasin (an extracellular peroxidase) are essential for generating sulfilimine cross-links between a methionine and a hydroxylysine within collagen IV, a basement membrane protein. The sulfilimine cross-links increase the structural integrity of basement membranes. The formation of sulfilimine cross-links depends on the ability of peroxidasin to use bromide and hydrogen peroxide substrates to produce hypobromous acid (HOBr).

View Article and Find Full Text PDF

Goodpasture's disease (GP) is mediated by autoantibodies that bind the glomerular and alveolar basement membrane, causing rapidly progressive glomerulonephritis with or without pulmonary hemorrhage. The autoantibodies bind neoepitopes formed upon disruption of the quaternary structure of α345NC1 hexamer, a critical structural domain of α345 collagen IV scaffolds. Hexamer disruption leads to a conformational changes that transitions α3 and α5NC1 subunits into immunogens, however, the trigger remains unknown.

View Article and Find Full Text PDF

A critical need exists for innovations in education that increase the recruitment of high school students from diverse backgrounds into the biomedical research workforce. Aspirnaut is one model that addresses this challenge.

View Article and Find Full Text PDF

Background: The discoidin domain receptor 1 (DDR1) is activated by collagens, upregulated in injured and fibrotic kidneys, and contributes to fibrosis by regulating extracellular matrix production, but how DDR1 controls fibrosis is poorly understood. DDR1 is a receptor tyrosine kinase (RTK). RTKs can translocate to the nucleus a nuclear localization sequence (NLS) present on the receptor itself or a ligand it is bound to.

View Article and Find Full Text PDF

Alport syndrome is caused by mutations in collagen IV that alter the morphology of renal glomerular basement membrane. Mutations result in proteinuria, tubulointerstitial fibrosis, and renal failure but the pathogenic mechanisms are not fully understood. Using imaging mass spectrometry, we aimed to determine whether the spatial and/or temporal patterns of renal lipids are perturbed during the development of Alport syndrome in the mouse model.

View Article and Find Full Text PDF
Article Synopsis
  • Collagen IV scaffold is a key component of the basement membrane that supports multicellularity and tissue evolution, beginning with the assembly of protochains inside cells and their subsequent secretion.
  • The study focuses on how chloride ions facilitate the assembly of collagen IV protomers into stable hexamers through a noncollagenous domain (NC1), which is essential for structural integrity.
  • Findings reveal that a specific chloride ring stabilizes the hexamer structure and is conserved throughout evolutionary history, providing insights for future research into collagen scaffolds and potential therapies for related diseases.
View Article and Find Full Text PDF

Basement membranes are extracellular structures of epithelia and endothelia that have collagen IV scaffolds of triple α-chain helical protomers that associate end-to-end, forming networks. The molecular mechanisms by which the noncollagenous C-terminal domains of α-chains direct the selection and assembly of the α1α2α1 and α3α4α5 hetero-oligomers found remain obscure. Autoantibodies against the noncollagenous domains of the α3α4α5 hexamer or mutations therein cause Goodpasture's or Alport's syndromes, respectively.

View Article and Find Full Text PDF

The emergence of the basement membrane (BM), a specialized form of extracellular matrix, was essential in the unicellular transition to multicellularity. However, the mechanism is unknown. Goodpasture antigen-binding protein (GPBP), a BM protein, was uniquely poised to play diverse roles in this transition owing to its multiple isoforms (GPBP-1, -2, and -3) with varied intracellular and extracellular functions (ceramide trafficker and protein kinase).

View Article and Find Full Text PDF

Background: Goodpasture syndrome (GP) is a pulmonary-renal syndrome characterized by autoantibodies directed against the NC1 domains of collagen IV in the glomerular and alveolar basement membranes. Exposure of the cryptic epitope is thought to occur disruption of sulfilimine crosslinks in the NC1 domain that are formed by peroxidasin-dependent production of hypobromous acid. Peroxidasin, a heme peroxidase, has significant structural overlap with myeloperoxidase (MPO), and MPO-ANCA is present both before and at GP diagnosis in some patients.

View Article and Find Full Text PDF

Albumin degradation in the renal tubules is impaired in diabetic nephropathy such that levels of the resulting albumin fragments increase with the degree of renal injury. However, the mechanism of albumin degradation is unknown. In particular, fragmentation of the endogenous native albumin has not been demonstrated in the kidney and the enzymes that may contribute to fragmentation have not been identified.

View Article and Find Full Text PDF

Goodpasture's (GP) disease is an autoimmune disorder characterized by the deposition of pathogenic autoantibodies in basement membranes of kidney and lung eliciting rapidly progressive glomerulonephritis and pulmonary hemorrhage. The principal autoantigen is the α345 network of collagen IV, which expression is restricted to target tissues. Recent discoveries include a key role of chloride and bromide for network assembly, a novel posttranslational modification of the antigen, a sulfilimine bond that crosslinks the antigen, and the mechanistic role of HLA in genetic susceptibility and resistance to GP disease.

View Article and Find Full Text PDF

The cellular microenvironment, characterized by an extracellular matrix (ECM), played an essential role in the transition from unicellularity to multicellularity in animals (metazoans), and in the subsequent evolution of diverse animal tissues and organs. A major ECM component are members of the collagen superfamily -comprising 28 types in vertebrates - that exist in diverse supramolecular assemblies ranging from networks to fibrils. Each assembly is characterized by a hallmark feature, a protein structure called a triple helix.

View Article and Find Full Text PDF