In contrast to other mammals, the large variation in dog sizes is not accompanied by any significant genetic re-organization. In order to study the relationship between body mass, limb length and the functional anatomical muscle parameters of the canine hind limb, a large dataset comprising of muscle masses, optimal muscle fibre lengths and physiological cross-sectional area's (PCSA) were acquired for twenty-five muscles in ten dogs of sizes varying between 20 kg and 52 kg. The potential of body mass and limb length for reliably scaling individual muscle masses, optimal muscle fibre lengths and PCSA's were examined.
View Article and Find Full Text PDFVet Comp Orthop Traumatol
May 2016
Musculoskeletal models have proven to be a valuable tool in human orthopaedics research. Recently, veterinary research started taking an interest in the computer modelling approach to understand the forces acting upon the canine musculoskeletal system. While many of the methods employed in human musculoskeletal models can applied to canine musculoskeletal models, not all techniques are applicable.
View Article and Find Full Text PDFSeahorses, pipefish and their syngnathiform relatives are considered unique amongst fishes in using elastic recoil of post-cranial tendons to pivot the head extremely quickly towards small crustacean prey. It is known that pipefish activate the epaxial muscles for a considerable time before striking, at which rotations of the head and the hyoid are temporarily prevented to allow energy storage in the epaxial tendons. Here, we studied the motor control of this system in seahorses using electromyographic recordings of the epaxial muscles and the sternohyoideus-hypaxial muscles with simultaneous high-speed video recordings of prey capture.
View Article and Find Full Text PDF