Publications by authors named "Billie J Swalla"

The evolution of the distinct chordate body plan has intrigued scientists for over a hundred and seventy years. Modern genomics and transcriptomics have allowed the elucidation of the Developmental Gene Regulatory Networks (GRNs) underlying the developmental programs for particular tissues and body axes in invertebrates and vertebrates. This has been most revealing in the Deuterostomia, the superphylum in which chordates evolved.

View Article and Find Full Text PDF

The Deuterostomia are a monophyletic group, consisting of the Ambulacraria, with two phyla, Hemichordata and Echinodermata, and the phylum Chordata, containing the subphyla Cephalochordata (lancelets or Amphioxus), Tunicata (Urochordata), and Vertebrata. Hemichordates and echinoderms are sister groups and are critical for understanding the deuterostome ancestor and the origin and evolution of the chordates within the deuterostomes. Enteropneusta, worm-like hemichordates, share many chordate features as adults, including a post-anal tail, gill slits, and a central nervous system (CNS) that deploys similar developmental genetic regulatory networks (GRNs).

View Article and Find Full Text PDF

AbstractWe describe the cloning and expression of a nonreceptor tyrosine kinase, (), a () gene, identified in a subtractive screen for maternal ascidian cDNAs in , an ascidian species with a tadpole larva. The gene encodes a 4-kb mRNA expressed in gonads, eggs, and embryos in the tailed but is not detected in eggs or embryos of the closely related tailless species . There is a large insertion in in the genome, as shown by transcriptome and genome analyses, resulting in it becoming a pseudogene.

View Article and Find Full Text PDF
Article Synopsis
  • Several species in the Molgulidae family of tunicates have lost the tailed larval body plan and the notochord, an important chordate feature, through convergent evolution.
  • Comparisons between the tailless species M. occulta and the tailed species M. oculata reveal a loss of notochord-specific expression of the Collagen Type I/II Alpha (Col1/2a) gene in the tailless species.
  • Using CRISPR/Cas9 in Ciona robusta, it is shown that while Col1/2a is essential for notochord cell morphogenesis in tailed species, it is not necessary in tailless species, likely due to accumulated mutations and a lack
View Article and Find Full Text PDF

Ascidians are invertebrate chordates, with swimming chordate tadpole larvae that have distinct heads and tails. The head contains the small brain, sensory organs, including the ocellus (light) and otolith (gravity) and the presumptive endoderm, while the tail has a notochord surrounded by muscle cells and a dorsal nerve cord. One of the chordate features is a post-anal tail.

View Article and Find Full Text PDF

The Origin of Chordates has fascinated scientists from the time of Charles Darwin's publication "Descent of Man" in 1871. For over 100 years, it was accepted that chordates evolved from tunicates, our sessile invertebrate sister group. However, genomic and embryonic analyses have shown that lancelets have a body plan and genome much more like vertebrates than do tunicates.

View Article and Find Full Text PDF

Many species in the tunicate family Molgulidae have independently lost their swimming larval form and instead develop as tailless, immotile larvae. These larvae do not develop structures that are essential for swimming such as the notochord, otolith, and tail muscles. However, little is known about neural development in these nonswimming larvae.

View Article and Find Full Text PDF

Sensory hair cells are highly specialized cells that form the basis for our senses of hearing, orientation to gravity, and perception of linear acceleration (head translation in space) and angular acceleration (head rotation). In many species of fish and aquatic amphibians, hair cells mediate perception of water movement through the lateral line system, and electroreceptors derived from hair cell precursors mediate electric field detection. In tunicates, cells of the mechanosensory coronal organ on the incurrent siphon meet the structural, functional, and developmental criteria to be described as hair cells, and they function to deflect large particles from entering the animal.

View Article and Find Full Text PDF

Severe injury to the central nervous system of chordates often results in permanent and irreversible mental and physical challenges. While some chordates are able to repair and/or regenerate portions of their nervous system, no chordate has been shown to be able to regenerate all regions of its central nervous system after catastrophic injury or amputation. Some hemichordates, on the other hand, are able to efficiently regenerate all neural structures, including their dorsal, hollow neural tube after complete ablation.

View Article and Find Full Text PDF

Tunicata, a diverse clade of approximately 3000 described species of marine, filter-feeding chordates, is of great interest to researchers because tunicates are the closest living relatives of vertebrates and they facilitate comparative studies of our own biology. The group also includes numerous invasive species that cause considerable economic damage and some species of tunicates are edible. Despite their diversity and importance, relationships among major lineages of Tunicata are not completely resolved.

View Article and Find Full Text PDF

Background: Analyzing close species with diverse developmental modes is instrumental for investigating the evolutionary significance of physiological, anatomical and behavioral features at a molecular level. Many examples of trait loss are known in metazoan populations living in dark environments. Tunicates are the closest living relatives of vertebrates and typically present a lifecycle with distinct motile larval and sessile adult stages.

View Article and Find Full Text PDF

Background: Head or anterior body part regeneration is commonly associated with protostome, but not deuterostome invertebrates. However, it has been shown that the solitary hemichordate Ptychodera flava possesses the remarkable capacity to regenerate their entire nervous system, including their dorsal neural tube and their anterior head-like structure, or proboscis. Hemichordates, also known as acorn worms, are marine invertebrate deuterostomes that have retained chordate traits that were likely present in the deuterostome ancestor, placing these animals in a vital position to study regeneration and chordate evolution.

View Article and Find Full Text PDF

The current paradigm of gut evolution assumes that non-bilaterian metazoan lineages either lack a gut (Porifera and Placozoa) or have a sac-like gut (Ctenophora and Cnidaria) and that a through-gut originated within Bilateria [1-8]. An important group for understanding early metazoan evolution is Ctenophora (comb jellies), which diverged very early from the animal stem lineage [9-13]. The perception that ctenophores possess a sac-like blind gut with only one major opening remains a commonly held misconception [4, 5, 7, 14, 15].

View Article and Find Full Text PDF

Phylum Hemichordata, composed of worm-like Enteropneusta and colonial Pterobranchia, has been reported to only contain about 100 species. However, recent studies of hemichordate phylogeny and taxonomy suggest the species number has been largely underestimated. One issue is that species must be described by experts, and historically few taxonomists have studied this group of marine invertebrates.

View Article and Find Full Text PDF

The cephalopod genus Nautilus is considered a "living fossil" with a contested number of extant and extinct species, and a benthic lifestyle that limits movement of animals between isolated seamounts and landmasses in the Indo-Pacific. Nautiluses are fished for their shells, most heavily in the Philippines, and these fisheries have little monitoring or regulation. Here, we evaluate the hypothesis that multiple species of Nautilus (e.

View Article and Find Full Text PDF

Ascidians belong to the tunicates, the sister group of vertebrates and are recognized model organisms in the field of embryonic development, regeneration and stem cells. ANISEED is the main information system in the field of ascidian developmental biology. This article reports the development of the system since its initial publication in 2010.

View Article and Find Full Text PDF

Ascidians (Chordata, Tunicata) are an important group for the study of invasive species biology due to rapid generation times, potential for biofouling, and role as filter feeders in an ecosystem. Phallusia nigra is a putative cosmopolitan ascidian that has been described as introduced or invasive in a number of regions in the Indo-Pacific Ocean (India, Japan, and Hawaii) and in the Mediterranean. The taxonomic description of P.

View Article and Find Full Text PDF

Ambulacraria, comprising Hemichordata and Echinodermata, is closely related to Chordata, making it integral to understanding chordate origins and polarizing chordate molecular and morphological characters. Unfortunately, relationships within Hemichordata and Echinodermata have remained unresolved, compromising our ability to extrapolate findings from the most closely related molecular and developmental models outside of Chordata (e.g.

View Article and Find Full Text PDF

Embryonic and postembryonic development in ascidians have been studied for over a century, but it is only in the last 10 years that the complex molecular network involved in coordinating postlarval development and metamorphosis has started to emerge. In most ascidians, the transition from the larval to the sessile juvenile/adult stage, or metamorphosis, requires a combination of environmental and endogenous signals and is characterized by coordinated global morphogenetic changes that are initiated by the adhesion of the larvae. Cloney was the first to describe cellular events of ascidians' metamorphosis in 1978 and only recently elements of the molecular regulation of this crucial developmental step have been revealed.

View Article and Find Full Text PDF

Tunicates are invertebrate members of the chordate phylum, and are considered to be the sister group of vertebrates. Tunicates are composed of ascidians, thaliaceans, and appendicularians. With the advent of inexpensive high-throughput sequencing, the number of sequenced tunicate genomes is expected to rise sharply within the coming years.

View Article and Find Full Text PDF

Ascidians present a striking dichotomy between conserved phenotypes and divergent genomes: embryonic cell lineages and gene expression patterns are conserved between distantly related species. Much research has focused on Ciona or Halocynthia spp. but development in other ascidians remains poorly characterized.

View Article and Find Full Text PDF

The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development.

View Article and Find Full Text PDF

Hemichordates are instrumental to understanding early deuterostome and chordate evolution, yet diversity and relationships within the group have been understudied. Recently, there has been renewed interest in hemichordate diversity and taxonomy, although current findings suggest that much hemichordate diversity remains to be discovered. Herein, we present a molecular phylogenetic study based on nuclear 18S rDNA sequence data, which includes 35 previously unsampled taxa and represents all recognized hemichordate families.

View Article and Find Full Text PDF

Acorn worms, or enteropneusts, are vermiform hemichordates that occupy an important position in deuterostome phylogeny. Allied to pterobranch hemichordates, small colonial tube dwellers, modern enteropneusts were thought to be tubeless. However, understanding of hemichordate diversity is poor, as evidenced by absence of reports from some oceanic regions and recent descriptions of large epibenthic deep-water enteropneusts, Torquaratoridae.

View Article and Find Full Text PDF