Publications by authors named "Billard F"

We demonstrate the generation of a persistent planar molecular alignment by subjecting a relatively warm gas sample to a resonant femtosecond laser pulse. By optically probing I_{2} molecules in their vibronic ground states, we observe a persistent delocalization of their axes near the plane orthogonal to the field direction. This phenomenon is attributed to the one-photon resonant excitation, primarily removing molecules from the thermal ground-state distribution that are initially aligned along the field, i.

View Article and Find Full Text PDF

A phase-matching-free ultrashort pulse retrieval based on the defocusing of a laser-induced plasma is presented. In this technique, a pump pulse ionizes a rare gas providing a plasma lens whose creation time is ultrafast. A probe pulse propagating through this gas lens experiences a switch of its divergence.

View Article and Find Full Text PDF

We propose a Markovian quantum model for the time dependence of the pressure-induced decoherence of rotational wave packets of gas-phase molecules beyond the secular approximation. It is based on a collisional relaxation matrix constructed using the energy-corrected sudden approximation, which improves the previously proposed infinite order sudden one by taking the molecule rotation during collisions into account. The model is tested by comparisons with time-domain measurements of the pressure-induced decays of molecular-axis alignment features (revivals and echoes) for HCl and CO2 gases, pure and diluted in He.

View Article and Find Full Text PDF

Combining evolutionary algorithm optimization with ultrafast fiber laser technology, we report on the self-generation of stable two-soliton molecules with controllable temporal separation. A fiber laser setup including an adjustable virtual saturable absorber achieved through nonlinear polarization evolution and an intracavity pulse shaper is used to generate two-soliton molecules with a user-defined 3-8 ps internal delay.

View Article and Find Full Text PDF

We present a new, to the best of our knowledge, variant of the spectral-shearing interferometry method for characterizing ultrashort laser pulses. This original approach, called Doppler effect e-field replication (DEER), exploits the rotational Doppler effect for producing frequency shear and provides spectral shearing in the absence of frequency conversion, enabling operation in the ultraviolet spectral range. Evaluation of the DEER-spectral phase interferometry for direct electric field reconstruction setup reveals a phase reconstruction of great reliability.

View Article and Find Full Text PDF

Quantum coherence plays an essential role in diverse natural phenomena and technological applications. The unavoidable coupling of the quantum system to an uncontrolled environment incurs dissipation that is often described using the secular approximation. Here we probe the limit of this approximation in the rotational relaxation of molecules due to thermal collisions by using the laser-kicked molecular rotor as a model system.

View Article and Find Full Text PDF

A simple and compact single-shot autocorrelator is presented and analyzed in detail. The autocorrelator is composed of two elements only: a Fresnel biprism used to create two temporally delayed replicas of the pulse to characterize and a camera in which two-photon absorption takes place. The two-photon absorption signal obtained in the camera can be used to retrieve the pulse duration, the frequency chirp, and the pulse spectrum, provided that a Gaussian temporal shape is assumed.

View Article and Find Full Text PDF

We show that recently discovered rotational echoes of molecules provide an efficient tool for studying collisional molecular dynamics in high-pressure gases. Our study demonstrates that rotational echoes enable the observation of extremely fast collisional dissipation, at timescales of the order of a few picoseconds, and possibly shorter. The decay of the rotational alignment echoes in CO_{2} gas and CO_{2}-He mixture up to 50 bar was studied experimentally, delivering collision rates that are in good agreement with the theoretical expectations.

View Article and Find Full Text PDF

We present a model for the lowest two potential energy surfaces (PESs) that describe the photoinduced ring-opening reaction of benzopyran taken as a model compound to study the photochromic ring-opening reaction of indolinobenzospiropyran and its evolution toward its open-chain analog. The PESs are expressed in terms of three effective rectilinear coordinates. One corresponds to the direction between the equilibrium geometry in the electronic ground state, referred to as the Franck-Condon geometry, and the minimum of conical intersection (CI), while the other two span the two-dimensional branching space at the CI.

View Article and Find Full Text PDF

We report on the polarization analysis of shortpulse ultraviolet radiation produced by third-harmonic generation in a gas of coherently spinning molecules. A pulse of twisted linear polarization imprints a unidirectional rotational motion to the molecules leading to an orientation of their rotational angular momenta. A second pulse, time-delayed with respect to the first one, circularly polarized in the plane of rotation of the molecules, acts as a driving field for third-harmonic generation.

View Article and Find Full Text PDF

We present the first quantum mechanical model of the collisional dissipation of the alignment of a gas of symmetric-top molecules (ethane) impulsively induced by a linearly polarized non-resonant laser field. The approach is based on use of the Bloch model and of the Markov and secular approximations in which the effects of collisions are taken into account through the state-to-state rates associated with exchanges among the various rotational states. These rates are constructed using the Energy Corrected Sudden (ECS) approximation with (a few) input parameters obtained independently from fits of the pressure-broadening coefficients of ethane absorption lines.

View Article and Find Full Text PDF

We present the first theoretical study of collisional dissipation of the alignment of a symmetric-top molecule (ethane gas) impulsively induced by a linearly polarized non-resonant laser field. For this, Classical Molecular Dynamics Simulations (CMDSs) are carried out for an ensemble of CH molecules based on knowledge of the laser-pulse characteristics and on an input intermolecular potential. These provide, for a given gas pressure and initial temperature, the orientations of all molecules at all times from which the alignment factor is directly obtained.

View Article and Find Full Text PDF

The field-free molecular alignment of symmetric-top molecules, ethane, induced by intense non-resonant linearly polarized femtosecond laser pulses is investigated experimentally in the presence of collisional relaxation. The dissipation dynamics of field-free molecular alignment are measured by the balanced detection of ultrafast molecular birefringence of ethane gas samples at high pressures. By separating the molecular alignment into the permanent alignment and the transient alignment, the decay time-constants of both components are quantified at the same pressure.

View Article and Find Full Text PDF

We demonstrate a polarized all-normal dispersion supercontinuum generated in a birefringent silica microstructured fiber spanning beyond 2.5 µm. To our knowledge, this is the spectra reaching the furthest in mid-infrared ever generated in normal dispersion silica fibers.

View Article and Find Full Text PDF

We present a method to finely tailor ultraviolet femtosecond laser pulses using a pulse shaper with ability in the infrared/visible spectral range. We have developed to that end a frequency doubling module in which the up-conversion mechanism is carried out in the Fourier plane of a 4 f -line. The pulse shaper is used to imprint a spectral phase and/or amplitude onto the fundamental pulse.

View Article and Find Full Text PDF

We present one of the simplest classical systems featuring the echo phenomenon-a collection of randomly oriented free rotors with dispersed rotational velocities. Following excitation by a pair of time-delayed impulsive kicks, the mean orientation or alignment of the ensemble exhibits multiple echoes and fractional echoes. We elucidate the mechanism of the echo formation by the kick-induced filamentation of phase space, and provide the first experimental demonstration of classical alignment echoes in a thermal gas of CO_{2} molecules excited by a pair of femtosecond laser pulses.

View Article and Find Full Text PDF

Control of the orientation of the angular momentum of linear molecules is demonstrated by means of laser polarization shaping. For this purpose, we combine two orthogonally polarized and partially time-overlapped femtosecond laser pulses so as to produce a spinning linear polarization which in turn induces unidirectional rotation of N2 molecules. The evolution of the rotational response is probed by a third laser beam that can be either linearly or circularly polarized.

View Article and Find Full Text PDF

We report herein a versatile cooperative dual catalysis reaction based on a Cu(I)/Pd(0) system. Mechanistic investigation shows that every component plays a crucial role in determining the reaction outcome. The reaction is successfully extended to various substrates; such as α,β-unsaturated ketones, malonates and coumarins.

View Article and Find Full Text PDF

Plasmonic dark modes are pure near-field resonances since their dipole moments are vanishing in far field. These modes are particularly interesting to enhance nonlinear light-matter interaction at the nanometer scale because radiative losses are mitigated therefore increasing the intrinsic lifetime of the resonances. However, the excitation of dark modes by standard far field approaches is generally inefficient because the symmetry of the electromagnetic near-field distribution has a poor overlap with the excitation field.

View Article and Find Full Text PDF

The purpose of the research was to develop and validate a rapid quantification method able to screen many samples of yam bean seeds to determine the content of two toxic polyphenols, namely pachyrrhizine and rotenone. The analytical procedure described is based on the use of an internal standard (dihydrorotenone) and is divided in three steps: microwave assisted extraction, purification by solid phase extraction and assay by ultra high performance liquid chromatography (UHPLC). Each step was included in the validation protocol and the accuracy profiles methodology was used to fully validate the method.

View Article and Find Full Text PDF

We present comparisons between measurements and ab initio calculations of the dissipation of the nonadiabatic laser-induced alignment in pure CO2 and CO2-He gas mixtures. The experiments were made for pressures between 2 and 20 bars at 295 K by using short non-resonant linearly polarized laser pulses for alignment and probe. The calculations are carried, free of any adjusted parameter, using refined intermolecular potentials and a requantized Classical Molecular Dynamics Simulations approach presented previously but not yet confronted to experiments.

View Article and Find Full Text PDF

A new modification of Julia-Kocienski olefination reaction based on the use of cation-specific chelating agents that yields 1,3-dienes with predictable (E/Z)-selectivity on newly created double bond was developed. The influence of the aldehyde structure on reaction (E/Z) selectivity is discussed and rationalized.

View Article and Find Full Text PDF

Transverse "chemical" interfaces are revealed with a conventional two beam narrowband coherent anti-Stokes Raman scattering microscopy setup in a collinear configuration. The exciting "pump" and "Stokes" beams are focused on the sample in two opposite directions. The subtraction of the two generated anti-Stokes signals gives rise to a signal that is directly proportional to the pure Raman spectrum of the resonant medium.

View Article and Find Full Text PDF

We study tight focus coherent anti-Stokes Raman scattering (CARS) emission in a microcavity where the active medium is squeezed between two independent planar mirrors. We show strong modifications in the CARS forward and backward far-field radiation patterns. For low-order cavities, we demonstrate that most of the emitted power can be concentrated into a direction perpendicular to the mirrors.

View Article and Find Full Text PDF

We show in this paper that the contrast of the interface between resonant and nonresonant media imaged in Coherent anti-Stokes Raman scattering (CARS) microscopy strongly depends on the pump and Stokes fields spectral detuning. More specifically, when this detuning drives the vibrational resonance with the maximum phase difference, a spatial dip appears at the interface in the CARS image. This effect is studied both theoretically and experimentally and is an evidence of the coherent and resonant nature of the CARS contrast mechanism.

View Article and Find Full Text PDF