Aquifers composed of porous granular media are important to human beings because they are capable of storing a large amount of groundwater. Contaminant migration and remediation in subsurface environments are strongly influenced by three-dimensional (3D) microstructures of porous media. In this study, fractal models are developed to investigate contaminant transport and surfactant-enhanced aquifer remediation (SEAR) for the regular tetrahedron microstructure (RTM) and right square pyramid microstructure (RSPM).
View Article and Find Full Text PDFDue to the extensive use of plastic products and unreasonable disposal, nanoplastics contamination has become one of the important environmental problems that mankind must face. The composition and structure of porous media can determine the complexity and diversity of the transport behavior of nanoplastics. In this study, the influence of diatomite (DIA) on the nanoplastics transport in porous media is investigated by column experiments combined with XDLVO interaction energy and transport model.
View Article and Find Full Text PDFWith the application of engineered nanomaterials and antibiotics in the fields of medicine, aerospace, new energy and agriculture, the associated contamination is detected widely in soil-groundwater systems. It is of great scientific and practical significance to deeply explore the environmental interface process between nanoparticles and antibiotics for the scientific assessment of environmental fate and ecological environmental risks, as well as the development of new composite pollution control technologies. In this study, the co-transport behaviors of positively charged titanium dioxide nanoparticles (TiO-NPs) and negatively charged levofloxacin (LEV) in quartz sand (QS) are investigated in this study.
View Article and Find Full Text PDFPrecipitation is a vital component of the global atmospheric and hydrological cycles and influencing the distribution of water resources. Even subtle changes in precipitation can significantly impact ecosystems, energy cycles, agricultural production, and food security. Therefore, understanding the changes in the precipitation structure under climate change is essential.
View Article and Find Full Text PDFIn this study, a combination of column experiments, interface chemistry theory and transport model with two-site kinetics was used to systematically investigate the effect of pH on the transport of polystyrene nanoparticles (PSNPs) in porous media. The porous media containing quartz sand (QS) and three kinds of clay minerals (CMs)-kaolinite (KL), illite (IL) and montmorillonite (MT), was used in column experiments to simulate the porous media in the soil-groundwater systems. Experimental results showed that the inhibitory effect of CMs on the transport of PSNPs is weakened as pH increases.
View Article and Find Full Text PDFAccurate predictions of coastal ocean chlorophyll-a (Chl-a) concentrations are necessary for dynamic water quality monitoring, with eutrophication as a critical factor. Prior studies that used the driven-data method have typically overlooked the relationship between Chl-a and marine particulate carbon. To address this gap, marine particulate carbon was incorporated into machine learning (ML) and deep learning (DL) models to estimate Chl-a concentrations in the Yang Jiang coastal ocean of China.
View Article and Find Full Text PDFEcotoxicol Environ Saf
August 2022
Understanding the fate and transport of polystyrene nanoparticles (PSNPs) in porous media under various conditions is necessary for evaluating and predicting environmental risks caused by microplastics. The transport kinetics of PSNPs are investigated by column experiment and numerical model. The surface of DLVO interaction energy is calculated to analyze and predict the adsorption and aggregation of PSNPs in porous media, which the critical ionic strength of PSNPs can be accurately investigated.
View Article and Find Full Text PDFMicroplastics are widely detected in the soil-groundwater environment, which has attracted more and more attention. Clay mineral is an important component of the porous media contained in aquifers. The transport experiments of polystyrene nanoparticles (PSNPs) in quartz sand (QS) mixed with three kinds of clay minerals are conducted to investigate the effects of kaolinite (KL), montmorillonite (MT) and illite (IL) on the mobility of PSNPs in groundwater.
View Article and Find Full Text PDFSci Total Environ
October 2022
With the rapid development of the nano-material and chemical industry, more and more microplastic (MP) and nano-material were discharged into the environment. In this study, a two-dimensional (2D) surface of Extended Darjaguin-Landau-Verwe-Overbeek (XDLVO) is proposed to quantitatively investigate the effect of polyamide (PA) on the transport of graphene oxide (GO) in porous media. The influences of mass fraction of PA, flow rate, GO concentration, ionic type and strength on the migration of GO in saturated porous media are investigated by column experiments and numerical models.
View Article and Find Full Text PDFAn accurate estimation of thaw depth is critical to understanding permafrost changes due to climate warming on the Qinghai-Tibetan Plateau (QTP). However, previous studies mainly focused on the interannual changes of active layer thickness (ALT) across the QTP, and little is known about the changes in the seasonal thaw depth. Machine learning (ML) is a critical tool to accurately estimate the ALT of permafrost, but a direct comparison of ML with deep learning (DL) in ALT projection regarding the model performance is still lacking.
View Article and Find Full Text PDFColumn experiments were conducted to investigate the effects of ion type, ion strength, humic acid (HA), and nanometer alumina (NA) particles on the transport of hexavalent chromium (HC) in saturated porous media. A one-dimensional model is developed to simulate the migration of HC affected by NA particles. The results show that nano-alumina particles would enhance the mobility of HC in saturated porous media.
View Article and Find Full Text PDFOases environments in oases to be sensitive to anthropogenic activity because of ecological fragility. Polycyclic aromatic hydrocarbon (PAH) pollution resulting from anthropogenic activity leads to ecological degradation in oases. To examine the impact of anthropogenic activity on the oasis ecological environment, the present study focused on the spatial distribution and source apportionment of soil PAHs and bacterial community responses in typical oases in Xinjiang, China.
View Article and Find Full Text PDFAs an endocrine disruptor, a deep understanding of the environmental behavior and potential driving force of bisphenol A (BPA) is helpful for developing a mitigation strategy and reducing the exposure risk to the public. Based on long-term monitoring data from 2004 to 2016, this study systematically evaluated the long-term trend, periodic characteristics, and potential risks of BPA in the Elbe River in the state of Saxony, Germany. Multiple advanced statistical approaches were employed for data mining.
View Article and Find Full Text PDFTo better understand the origin of the saline groundwater in the Pearl River Delta (PRD), China, water samples were collected from local aquifers, rainfall regions and rivers for isotopic and hydrochemical analysis. The hydraulic connections between the aquifers in the study area were tested by analyzing a series of water samples from different months in one hydrological year (January 2017-January 2018). The total dissolved solids (TDS) results show that the highly saline groundwater only occurs in the granites, which indicates that the TDS distribution depends on the permeability of the aquifer material.
View Article and Find Full Text PDFSci Total Environ
February 2021
Bacterial community has been significantly enrolled in the biogeochemical cycling of the coastal subsurface ecosystem. The bacterial community variations with salinity have been extensively investigated in the surface environment, such as lake, soil, and estuary, but not in the subsurface environment. Here we explore the responses of bacterial populations to the salinity and other environmental factors (EFs) by considering both the abundant and rare sub-community in a coastal Holocene groundwater system.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2021
A salt-freshwater transition zone due to seawater intrusion to groundwater promotes changes in microbial diversity and community composition in a coastal aquifer. The main purpose of this study is to explore the effect of seawater intrusion on the groundwater quality in a salt-freshwater transition zone and identify the microbial fingerprints of seawater intrusion. The changes in microbial community diversity response to the seawater intrusion were characterized by comparing the community structures of the microbes in fresh groundwater, seawater, and salty groundwater from various monitoring wells at different depths using the high throughput 16S rDNA gene sequencing.
View Article and Find Full Text PDFMonitoring spatial and temporal chemical status of water bodies is crucial to assist environmental policy, identify the chemical fingerprints, and further reduce the source orientated pollutants. Elbe River is one of the major rivers affected by anthropogenic activities in vicinity countries. This study assessed the spatiotemporal changes in response to source shift of Cd, Cu, Ni, Pb, and Zn in the suspended particulate matter (SPM) at upstream, midstream, and downstream of the Elbe River reach in Saxony state, Germany.
View Article and Find Full Text PDFThis study examines the adsorption and desorption characteristics of heavy metals in road dust (RD) for the aspect of integrated stormwater management. The chemical fractionations of Cu, Zn, Ni, and Cd were determined by a three-step sequential extraction protocol. Pseudo-first-order and Pseudo-second-order kinetic models, along with Langmuir, Freundlich, and Temkin isotherms were adopted to simulate the batch experimental data.
View Article and Find Full Text PDFAlmost half of the groundwater in the Pearl River Delta (PRD) contains salt water originally derived from paleo-seawater due to the Holocene transgression, which then generates intense physicochemical gradients in the mixing zone between freshwater and saltwater. Although some studies have been conducted on the hydrological and geochemical characteristics of groundwater in the PRD to monitor the intrusion of seawater, little attention has been paid to the microbial community of this particular region. In this study, we implemented a high-throughput sequencing analysis to characterize the microbial communities along a salinity gradient in the PRD aquifer, China.
View Article and Find Full Text PDFRepresentative elementary volume (REV) is important to characterize dense nonaqueous phase liquids (DNAPLs) during surfactant-Enhanced aquifer remediation (SEAR) period. To investigate the REVs of DNAPL in remediation, a perchloroethylene (PCE) SEAR experiment is conducted in a two dimensional (2D) heterogeneous translucent porous media. Light transmission techniques are used to quantify PCE saturation (S) and PCE-water interfacial area (A).
View Article and Find Full Text PDFSeawater intrusion and brine water/freshwater interaction have significantly affected agriculture, industry and public water supply at Laizhou Bay, Shandong Province, China. In this study, a two-dimensional SEAWAT model is developed to simulate the seawater intrusion to coastal aquifers and brine water/fresh water interaction in the south of Laizhou Bay. This model is applied to predict the seawater intrusion and brine water/freshwater interface development in the coming years.
View Article and Find Full Text PDFThe gradient distribution of microbial communities has been detected in profiles along many natural environments. In a mangrove seedlings inhabited mudflat, the microbes drive a variety of biogeochemical processes and are associated with a dramatically changed environment across the tidal zones of mudflat. A better understanding of microbial composition, diversity and associated functional profiles in relation to physicochemical influences could provide more insights into the ecological functions of microbes in a coastal mangrove ecosystem.
View Article and Find Full Text PDF