Publications by authors named "Bill Triggs"

High order perturbation theory has seen an unexpected recent revival for controlled calculations of quantum many-body systems, even at strong coupling. We adapt integration methods using low-discrepancy sequences to this problem. They greatly outperform state-of-the-art diagrammatic Monte Carlo simulations.

View Article and Find Full Text PDF

The advent of deep learning has pushed medical image analysis to new levels, rapidly replacing more traditional machine learning and computer vision pipelines. However segmenting and labelling anatomical regions remains challenging owing to appearance variations, imaging artifacts, the paucity and variability of annotated data, and the difficulty of fully exploiting domain constraints such as anatomical knowledge about inter-region relationships. We address the last point, improving the network's region-labeling consistency by introducing NonAdjLoss, an adjacency-graph based auxiliary training loss that penalizes outputs containing regions with anatomically-incorrect adjacency relationships.

View Article and Find Full Text PDF

We introduce the hierarchical Markov aspect model (HMAM), a computationally efficient graphical model for densely labeling large remote sensing images with their underlying terrain classes. HMAM resolves local ambiguities efficiently by combining the benefits of quadtree representations and aspect models-the former incorporate multiscale visual features and hierarchical smoothing to provide improved local label consistency, while the latter sharpen the labelings by focusing them on the classes that are most relevant for the broader local image context. The full HMAM model takes a grid of local hierarchical Markov quadtrees over image patches and augments it by incorporating a probabilistic latent semantic analysis aspect model over a larger local image tile at each level of the quadtree forest.

View Article and Find Full Text PDF

Making recognition more reliable under uncontrolled lighting conditions is one of the most important challenges for practical face recognition systems. We tackle this by combining the strengths of robust illumination normalization, local texture-based face representations, distance transform based matching, kernel-based feature extraction and multiple feature fusion. Specifically, we make three main contributions: 1) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; 2) we introduce local ternary patterns (LTP), a generalization of the local binary pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions, and we show that replacing comparisons based on local spatial histograms with a distance transform based similarity metric further improves the performance of LBP/LTP based face recognition; and 3) we further improve robustness by adding Kernel principal component analysis (PCA) feature extraction and incorporating rich local appearance cues from two complementary sources--Gabor wavelets and LBP--showing that the combination is considerably more accurate than either feature set alone.

View Article and Find Full Text PDF
Recovering 3D human pose from monocular images.

IEEE Trans Pattern Anal Mach Intell

January 2006

We describe a learning-based method for recovering 3D human body pose from single images and monocular image sequences. Our approach requires neither an explicit body model nor prior labeling of body parts in the image. Instead, it recovers pose by direct nonlinear regression against shape descriptor vectors extracted automatically from image silhouettes.

View Article and Find Full Text PDF