Cancer is one of the leading causes of death in the U.S., and tumorous cancers such as cervical, lung, breast, and ovarian cancers are the most common types.
View Article and Find Full Text PDFThe COVID-19 pandemic was declared due to the spread of the novel coronavirus, SARS-CoV-2. Viral infection is caused by the interaction between the SARS-CoV-2 receptor binding domain (RBD) and the human ACE2 receptor (hACE2). Previous computational studies have identified repurposed small molecules that target the RBD, but very few have screened drugs in the RBD-hACE2 interface.
View Article and Find Full Text PDFBackground: Microtubule-associated proteins regulate the dynamics, organization, and function of microtubules, impacting a number of vital cellular processes. CRMPs have been shown to control microtubule assembly and axon outgrowth during neuronal differentiation. While many microtubule-associated proteins have been linked to roles in cell division and neuronal development, it is still unclear the complement that control the formation of parallel microtubule arrays in epithelial cells.
View Article and Find Full Text PDFPhotoacoustic (PA) imaging has proved versatile for many biomedical applications from drug delivery tracking to disease diagnostics and postoperative surveillance. It recently emerged as a tool for accurate and real-time heparin monitoring to avoid bleeding complications associated with anticoagulant therapy. However, molecular-dye-based application is limited by high concentration requirements, photostability, and a strong background hemoglobin signal.
View Article and Find Full Text PDFAromatase (CYP19) catalyzes the last biosynthetic step of estrogens in mammals and is a primary drug target for hormone-related breast cancer. However, treatment with aromatase inhibitors is often associated with adverse effects and drug resistance. In this study, we used virtual screening targeting a predicted cytochrome P450 reductase binding site on aromatase to discover four novel non-steroidal aromatase inhibitors.
View Article and Find Full Text PDFDeposition of amyloid β (Aβ) fibrils in the brain is a key pathologic hallmark of Alzheimer's disease. A class of polyphenolic biflavonoids is known to have anti-amyloidogenic effects by inhibiting aggregation of Aβ and promoting disaggregation of Aβ fibrils. In the present study, we further sought to investigate the structural basis of the Aβ disaggregating activity of biflavonoids and their interactions at the atomic level.
View Article and Find Full Text PDFRecent experiments indicate that the C-Jun amino-terminal kinase-interacting protein 1 (JIP1) binds to and activates the c-Jun N-terminal kinase (JNK) protein. JNK is an integral part of cell apoptosis, and misregulation of this process is a causative factor in diseases such as Alzheimer's disease (AD), obesity, and cancer. It has also been shown that JIP1 may increase the phosphorylation of tau by facilitating the interaction between the tau protein and JNK, which could also be a causative factor in AD.
View Article and Find Full Text PDFis the causative agent of bacillary dysentery and is responsible for an estimated 165 million infections and 600,000 deaths annually. Like many Gram-negative pathogens, relies on a type three secretion system (T3SS) to initiate and sustain infection by directly injecting effector proteins into host cells. Protein secretion through the needle-like injectisome and overall virulence rely on the T3SS ATPase Spa47, making it a likely means for T3SS regulation and an attractive target for therapeutic small molecule inhibitors.
View Article and Find Full Text PDFDNA polymerase I from Thermus aquaticus ( Taq DNA polymerase) is useful for polymerase chain reactions because of its exceptional thermostability; however, its activity at low temperatures can cause amplification of unintended products. Mutation of isoleucine 707 to leucine (I707L) slows Taq DNA polymerase at low temperatures, which decreases unwanted amplification due to mispriming. In this work, unrestrained molecular dynamics (MD) simulations were performed on I707L and wild-type (WT) Taq DNA polymerase at 341 and 298 K to determine how the mutation affects the dynamic nature of the protein.
View Article and Find Full Text PDFWe recently reported a real-time method to measure heparin in human whole blood based on the photoacoustic change of methylene blue (MB). Intriguingly, the MB behaved unlike other "turn on" photoacoustic probes-the absorbance decreased as the photoacoustic signal increased. The underlying mechanism was not clear and motivated this study.
View Article and Find Full Text PDFOptimizing DNA polymerases for a broad range of tasks requires an understanding of the factors influencing polymerase fidelity, but many details of polymerase behavior remain unknown, especially in the presence of mismatched nascent base pairs. Using molecular dynamics, the large fragment of Bacillus stearothermophilus DNA polymerase I is simulated in the presence of all 16 possible standard nucleoside triphosphate-template (dNTP-dN) pairs, including four Watson-Crick pairs and 12 mismatches. The precatalytic steps of nucleotide addition from nucleotide insertion to immediately preceding catalysis are explored using three starting structures representing different stages of nucleotide addition.
View Article and Find Full Text PDFThe accuracy of computational models for simulating biomolecules under specific solution pH conditions is critical for properly representing the effect of pH in biological processes. Constant pH (CpH) simulations involving implicit solvent using the AMBER software often incorrectly estimate pK values of aspartate and glutamate residues due to large effective radii stemming from the presence of dummy protons. These inaccuracies stem from problems in the sampled ensembles of titratable residues that can influence other observable pH-dependent behavior, such as conformational change.
View Article and Find Full Text PDFThe accurate determination and control of the wavelength of light is fundamental to many fields of science. Speckle patterns resulting from the interference of multiple reflections in disordered media are well-known to scramble the information content of light by complex but linear processes. However, these patterns are, in fact, exceptionally rich in information about the illuminating source.
View Article and Find Full Text PDFThe human immunodeficiency virus (HIV) infects healthy human cells by binding to the glycoprotein cluster of differentiation 4 receptors on the surface of helper T-cells, along with either of two chemokine receptors, CC chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4). Recently, a pyrazolo-piperdine ligand was synthesized and the corresponding biological data showed good binding to both chemokine receptors, effectively blocking HIV-1 entry. Here, we exhaustively assess the atomistic binding interactions of this compound with both CCR5 and CXCR4, and we find that binding is driven by π-stacking interactions between aromatic rings on the ligand and receptor residues, as well as electrostatic interactions involving the protonated piperidine nitrogen.
View Article and Find Full Text PDFDynemicin A has the ability to undergo the Bergman cyclization, forming a para-benzyne moiety with the ability to induce DNA strand scission. This property of dynemicin A makes it a promising anti-tumor agent. Past research has shown conclusively that dynemicin A binds to and abstracts a hydrogen atom (H5') from the DNA backbone, but the molecular mechanism of the binding event is not fully understood.
View Article and Find Full Text PDFMutations in the amyloid precursor protein (APP) are responsible for the formation of amyloid-β peptides. These peptides play a role in Alzheimer's and other dementia-related diseases. The cargo binding domain of the kinesin-1 light chain motor protein (KLC1) may be responsible for transporting APP either directly or via interaction with C-jun N-terminal kinase-interacting protein 1 (JIP1).
View Article and Find Full Text PDFDNA polymerases must quickly and accurately distinguish between similar nucleic acids to form Watson-Crick base pairs and avoid DNA replication errors. Deoxynucleoside triphosphate (dNTP) binding to the DNA polymerase active site induces a large conformational change that is difficult to characterize experimentally on an atomic level. Here, we report an X-ray crystal structure of DNA polymerase I bound to DNA in the open conformation with a dNTP present in the active site.
View Article and Find Full Text PDFAssembly of polymerase chain reactions at room temperature can sometimes lead to low yields or unintentional products due to mispriming. Mutation of isoleucine 707 to leucine in DNA polymerase I from Thermus aquaticus substantially decreases its activity at room temperature without compromising its ability to amplify DNA. To understand why a conservative change to the enzyme over 20 Å from the active site can have a large impact on its activity at low temperature, we solved the X-ray crystal structure of the large (5'-to-3' exonuclease-deleted) fragment of Taq DNA polymerase containing the cold-sensitive mutation in the ternary (E-DNA-ddNTP) and binary (E-DNA) complexes.
View Article and Find Full Text PDFPLoS Comput Biol
December 2014
During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although X-ray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic pathway, solution fluorescence studies indicate that those key states are populated in the absence of substrate.
View Article and Find Full Text PDFChagas disease (or American trypanosomiasis) is a deadly tropical disease that affects millions of people worldwide, primarily in rural regions of South America. Trypanosoma cruzi, the parasitic cause of Chagas disease, possesses a membrane-anchored trans-sialidase enzyme that transfers sialic acids from the host cell surface to the parasitic cell surface, allowing T. cruzi to effectively evade the host's immune system.
View Article and Find Full Text PDFChagas' is a fatal disease that affects millions of people worldwide. The lack of safe and effective treatments for Chagas' highlights the need for the discovery of new drugs to fight the disease. Trypanosoma cruzi, the parasitic cause of Chagas' disease, synthesizes a trans-sialidase (TcTS) enzyme responsible for the transfer of sialic acids from the host cell surface to glycoconjugates on the parasitic cell surface.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2012
MM-PBSA is a post-processing end-state method to calculate free energies of molecules in solution. MMPBSA.py is a program written in Python for streamlining end-state free energy calculations using ensembles derived from molecular dynamics (MD) or Monte Carlo (MC) simulations.
View Article and Find Full Text PDFSubstrate ingress and product egress from the active site of urease is tightly controlled by an active-site flap. Molecular dynamics simulations of urease have revealed a previously unobserved wide-open flap state that, unlike the well-characterized closed and open states, allows ready access to the metal cluster in the active site. This state is easily reached from the open state via low free energy barriers.
View Article and Find Full Text PDFThe ultimate success of a practice in growing its referral base is contingent upon management's ability to provide a clear direction and vision, challenge and inspire staff, achieve a shared vision, challenge the process to achieve continuous quality improvement, reward success in achieving team goals, and celebrate team accomplishments. Keeping your patients loyal may be as simple as practicing good customer service. This article discusses customer service and the needs of patients coupled with the mechanics of a successful referral program.
View Article and Find Full Text PDF