Direct lithium extraction via membrane separations has been fundamentally limited by lack of monovalent ion selectivity exhibited by conventional polymeric membranes, particularly between sodium and lithium ions. Recently, a 12-Crown-4-functionalized polynorbornene membrane was shown to have the largest lithium/sodium permeability selectivity observed in a fully aqueous system to date. Using atomistic molecular dynamics simulations, we reveal that this selectivity is due to strong interactions between sodium ions and 12-Crown-4 moieties, which reduce sodium ion diffusivity while leaving lithium ion mobility relatively unaffected.
View Article and Find Full Text PDFWe probe the ion mobilities, transference numbers, and inverse Haven ratio of ionic liquids and polymerized ionic liquids as a function of their molecular weight using a combination of atomistic equilibrium and nonequilibrium molecular dynamics simulations. In contrast to expectations, we demonstrate that the inverse Haven ratio increases with increasing degree of polymerization () and then decreases at larger . For a fixed center of mass reference frame, we demonstrate that such results arise as a consequence of the strong cation-cation correlated motions, which exceed (in magnitude) the self-diffusivity of cations.
View Article and Find Full Text PDFWe use coarse-grained molecular dynamics simulations to study the effect of salt concentration and host polymer molecular weight on ion transport in polymer electrolytes. We find that increasing salt concentration or molecular weight similarly slows polymer dynamics across a wide range of host polarities, and that the resulting relaxation times display a correlation to the product of the salt concentration and polymer molecular weight. However, we find that molar conductivity only decreases with polymer dynamics at high polarities but is uncorrelated with the latter at low polarities.
View Article and Find Full Text PDFIn this work, we use computer simulations to demonstrate that there may be limits to which polymer polarity alone can be used to influence the ionic conductivity of salt-doped polymer electrolytes. Specifically, we use coarse-grained molecular dynamics simulations to probe the effect of the polarity of the polymer electrolyte upon ion mobilities and conductivities of dissolved salts. At low polymer polarities, increasing the polymer dielectric constant reduces ionic aggregation and the resultant correlated ionic motion, and increases the ionic conductivity.
View Article and Find Full Text PDFWe use all-atom molecular dynamics simulations to study the effect of polymer polarity, as quantified by the dielectric constant, on the transport properties of lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) doped polyethers. Our results indicate that increasing the host dielectric constant leads to a decrease in ionic cluster sizes and reduction in correlated motion of oppositely charged ions. This causes the ionic conductivity to more closely approach the Nernst-Einstein limit in which ionic conductivity is only limited by the diffusivities of Li and TFSI.
View Article and Find Full Text PDFWe report the results of atomistic molecular dynamics simulations on polymerized 1-butyl-3-vinylimidazolium-hexafluorophosphate ionic liquids, studying the influence of the polymer molecular weight on the ion mobilities and the mechanisms underlying ion transport, including ion-association dynamics, ion hopping, and ion-polymer coordinations. With an increase in polymer molecular weight, the diffusivity of the hexafluorophosphate (PF) counterion decreases and plateaus above seven repeat units. The diffusivity is seen to correlate well with the ion-association structural relaxation time for pure ionic liquids, but becomes more correlated with ion-association lifetimes for larger molecular weight polymers.
View Article and Find Full Text PDF