COVID-19 convalescent plasma (CCP) was one of the first therapies to receive emergency use authorization for management of COVID-19. We assessed the effectiveness of CCP in a propensity-matched analysis, and whether the presence of antibodies in the recipient at the time of treatment or the titer of antibodies in the administered CCP influenced clinical effectiveness. In an inpatient population within a single large health system, a total of 290 CCP patients were matched to 290 controls.
View Article and Find Full Text PDFLung transplant remains the primary therapeutic option for patients with end-stage lung disease, but long-term survival rates remain suboptimal compared with other solid organ transplants. Acute cellular rejection (ACR) is a significant challenge in lung transplant recipients, with T cell-mediated mechanisms playing a major role. IL-10 is known for its immunoregulatory function, although its specific role in lung allograft rejection remains unclear.
View Article and Find Full Text PDFThe severity of bacterial pneumonia can be worsened by impaired innate immunity resulting in ineffective pathogen clearance. We describe a mitochondrial protein, aspartyl-tRNA synthetase (DARS2), which is released in circulation during bacterial pneumonia in humans and displays intrinsic innate immune properties and cellular repair properties. DARS2 interacts with a bacterial-induced ubiquitin E3 ligase subunit, FBXO24, which targets the synthetase for ubiquitylation and degradation, a process that is inhibited by DARS2 acetylation.
View Article and Find Full Text PDFCurrent treatments targeting individual protein quality control have limited efficacy in alleviating proteinopathies, highlighting the prerequisite for a common upstream druggable target capable of global proteostasis modulation. Building on our prior research establishing nuclear speckles as a pivotal membrane-less organelle responsible for global proteostasis transcriptional control, we aim to alleviate proteinopathies through nuclear speckle rejuvenation. We identified pyrvinium pamoate as a small-molecule nuclear speckle rejuvenator that enhances protein quality control while suppressing YAP1 signaling via decreasing the surface/interfacial tension of nuclear speckle condensates through interaction with the intrinsically disordered region of nuclear speckle scaffold protein SON.
View Article and Find Full Text PDFThe main protease of severe acute respiratory syndrome coronavirus 2, Mpro, is a key viral protein essential for viral infection and replication. Mpro has been the target of many pharmacological efforts; however, the host-specific regulation of Mpro protein remains unclear. Here, we report the ubiquitin-proteasome-dependent degradation of Mpro protein in human cells, facilitated by the human E3 ubiquitin ligase ZBTB25.
View Article and Find Full Text PDFDysregulated cytokine signalling is a hallmark of inflammatory bowel diseases. Inflammatory responses of the colon are regulated by the suppressor of cytokine signalling (SOCS) proteins. SOCS1 is a key member of this family, and its function is critical in maintaining an appropriate inflammatory response through the JAK/STAT signalling pathway.
View Article and Find Full Text PDFChronic lung allograft dysfunction is the major barrier to long-term survival in lung transplant recipients. Evidence supports type 1 alloimmunity as the predominant response in acute/chronic lung rejection, but the immunoregulatory mechanisms remain incompletely understood. We studied the combinatorial F-box E3 ligase system: F-box protein 3 (FBXO3; proinflammatory) and F-box and leucine-rich repeat protein 2 (FBXL2; anti-inflammatory and regulates TNFR-associated factor [TRAF] protein).
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
October 2022
Accumulation of excessive extracellular matrix (ECM) components from lung fibroblasts is a feature of systemic sclerosis-associated interstitial lung disease (SSc-ILD), and there is increasing evidence that innate immune signaling pathways contribute to these processes. Toll-like receptors (TLRs) are innate immune sensors activated by danger signals derived from pathogens or host molecular patterns. Several damage-associated molecular pattern (DAMP) molecules are elevated in SSc-ILD plasma, including ligands that activate TLR9, an innate immune sensor recently implicated in driving profibrotic responses in fibroblasts.
View Article and Find Full Text PDFLymphopenia is common in severe coronavirus disease (COVID-19), yet the immune mechanisms are poorly understood. As inflammatory cytokines are increased in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we hypothesized a role in contributing to reduced T-cell numbers. We sought to characterize the functional SARS-CoV-2 T-cell responses in patients with severe versus recovered, mild COVID-19 to determine whether differences were detectable.
View Article and Find Full Text PDFAquaporin 5 (AQP5) is expressed in several cell types in the lung and regulates water transport, which contributes to barrier function during injury and the composition of glandular secretions. Reduced AQP5 expression is associated with barrier dysfunction during acute lung injury, and strategies to enhance its expression are associated with favorable phenotypes. Thus, pharmacologically enhancing AQP5 expression could be beneficial.
View Article and Find Full Text PDFMitochondria evolved from endosymbiotic bacteria to become essential organelles of eukaryotic cells. The unique lipid composition and structure of mitochondrial membranes are critical for the proper functioning of mitochondria. However, stress responses that help maintain the mitochondrial membrane integrity are not well understood.
View Article and Find Full Text PDFSARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identify small molecules that reduce surface expression of TMPRSS2 using a library of 2,560 FDA-approved or current clinical trial compounds.
View Article and Find Full Text PDFThe endo-lysosomal pathway plays an important role in pathogen clearance and both bacteria and viruses have evolved complex mechanisms to evade this host system. Here, we describe a novel aspect of coronaviral infection, whereby the master transcriptional regulator of lysosome biogenesis - TFEB - is targeted for proteasomal-mediated degradation upon viral infection. Through mass spectrometry analysis and an unbiased siRNA screen, we identify that TFEB protein stability is coordinately regulated by the E3 ubiquitin ligase subunit DCAF7 and the PAK2 kinase.
View Article and Find Full Text PDFThe adenosine monophosphate (AMP)-activated protein kinase (Ampk) is a central regulator of metabolic pathways, and increasing Ampk activity has been considered to be an attractive therapeutic target. Here, we have identified an orphan ubiquitin E3 ligase subunit protein, Fbxo48, that targets the active, phosphorylated Ampkα (pAmpkα) for polyubiquitylation and proteasomal degradation. We have generated a novel Fbxo48 inhibitory compound, BC1618, whose potency in stimulating Ampk-dependent signaling greatly exceeds 5-aminoimidazole-4-carboxamide-1-β-ribofuranoside (AICAR) or metformin.
View Article and Find Full Text PDFThe Skp1-Cul1-F-box protein (SCF) E3 ligase complex is one of the largest ubiquitin E3 ligase families. FBXL19, a F-box protein in SCF E3 ligase complex, regulates a variety of cellular responses including cell migration. We have shown that FBXL19 is not stable and its degradation is mediated by the ubiquitin-proteasome system, while the ubiquitin E3 ligase for FBXL19 ubiquitination and degradation has not been identified.
View Article and Find Full Text PDFSARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identified small molecules that can reduce surface expression of TMPRSS2 using a 2,700 FDA-approved or current clinical trial compounds.
View Article and Find Full Text PDFMitochondrial quality control is mediated by the PTEN-induced kinase 1 (PINK1), a cytoprotective protein that is dysregulated in inflammatory lung injury and neurodegenerative diseases. Here, we show that a ubiquitin E3 ligase receptor component, FBXO7, targets PINK1 for its cellular disposal. FBXO7, by mediating PINK1 ubiquitylation and degradation, was sufficient to induce mitochondrial injury and inflammation in experimental pneumonia.
View Article and Find Full Text PDFFBXL2 is an important ubiquitin E3 ligase component that modulates inflammatory signaling and cell cycle progression, but its molecular regulation is largely unknown. Here, we show that tumor necrosis factor alpha (TNF-α), a critical cytokine linked to the inflammatory response during skeletal muscle regeneration, suppressed mRNA expression in C2C12 myoblasts and triggered significant alterations in cell cycle, metabolic, and protein translation processes. Gene silencing of in skeletal myoblasts resulted in increased proliferative responses characterized by activation of mitogen-activated protein (MAP) kinases and nuclear factor kappa B and decreased myogenic differentiation, as reflected by reduced expression of myogenin and impaired myotube formation.
View Article and Find Full Text PDFNRF2 is a master regulator of cellular anti-oxidant and anti-inflammatory responses, and strategies to augment NRF2-dependent responses may beneficial in many diseases. Basal NRF2 protein level is constrained by constitutive KEAP1-mediated degradation, but in the presence of electrophiles, NRF2 ubiquitination is inhibited. Impeded NRF2 degradation increases NRF2 protein, resulting in up-regulation of anti-oxidant gene transcription, and decreased inflammation.
View Article and Find Full Text PDFSystemic scleroderma (SSc) is an autoimmune disease that affects over 2.5 million people globally. SSc results in dysfunctional connective tissues with excessive profibrotic signaling, affecting skin, cardiovascular, and particularly lung tissue.
View Article and Find Full Text PDFInterleukin-3 (IL-3) receptor α (IL-3Rα) is the α subunit of the ligand-specific IL-3R and initiates intracellular signaling in response to IL-3. IL-3 amplifies proinflammatory signaling and cytokine storm in murine sepsis models. Here we found that RNFT2 (RING finger transmembrane-domain containing protein 2, also TMEM118), a previously uncharacterized RING finger ubiquitin E3 ligase, negatively regulated IL-3-dependent cellular responses through IL-3Rα ubiquitination and degradation in the proteasome.
View Article and Find Full Text PDFObjectives: Classification of patients with acute respiratory distress syndrome into hyper- and hypoinflammatory subphenotypes using plasma biomarkers may facilitate more effective targeted therapy. We examined whether established subphenotypes are present not only in patients with acute respiratory distress syndrome but also in patients at risk for acute respiratory distress syndrome (ARFA) and then assessed the prognostic information of baseline subphenotyping on the evolution of host-response biomarkers and clinical outcomes.
Design: Prospective, observational cohort study.
Nutrient sensing is a critical cellular process controlling metabolism and signaling. mTOR complex 1 (mTORC1) is the primary signaling hub for nutrient sensing and, when activated, stimulates anabolic processes while decreasing autophagic flux. mTORC1 receives nutrient status signals from intracellular amino acid sensors.
View Article and Find Full Text PDFDysregulated proinflammatory cytokine release has been implicated in the pathogenesis of several life-threatening acute lung illnesses such as pneumonia, sepsis, and acute respiratory distress syndrome. Suppressors of cytokine signaling proteins, particularly SOCS2, have recently been described as antiinflammatory mediators. However, the regulation of SOCS2 protein has not been described.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
February 2020
TLR8 (Toll-like receptor 8) is an intracellular pattern recognition receptor that senses RNA in endosomes to initiate innate immune signaling through NF-κB, and mechanisms regulating TLR8 protein abundance are not completely understood. Protein degradation is a cellular process controlling protein concentrations, accomplished largely through ubiquitin transfer directed by E3 ligase proteins to substrates. In the present study, we show that TLR8 has a short half-life in THP-1 monocytes (∼1 h) and that TLR8 is ubiquitinated and degraded in the proteasome.
View Article and Find Full Text PDF