Unlabelled: SARS-CoV-2 mRNA vaccines induce robust and persistent germinal centre (GC) B cell responses in humans. It remains unclear how the continuous evolution of the virus impacts the breadth of the induced GC B cell response. Using ultrasound-guided fine needle aspiration, we examined draining lymph nodes of nine healthy adults following bivalent booster immunization.
View Article and Find Full Text PDFThe primary two-dose SARS-CoV-2 mRNA vaccine series are strongly immunogenic in humans, but the emergence of highly infectious variants necessitated additional doses and the development of vaccines aimed at the new variants. SARS-CoV-2 booster immunizations in humans primarily recruit pre-existing memory B cells. However, it remains unclear whether the additional doses induce germinal centre reactions whereby re-engaged B cells can further mature, and whether variant-derived vaccines can elicit responses to variant-specific epitopes.
View Article and Find Full Text PDFThe primary two-dose SARS-CoV-2 mRNA vaccine series are strongly immunogenic in humans, but the emergence of highly infectious variants necessitated additional doses of these vaccines and the development of new variant-derived ones . SARS-CoV-2 booster immunizations in humans primarily recruit pre-existing memory B cells (MBCs) . It remains unclear, however, whether the additional doses induce germinal centre (GC) reactions where reengaged B cells can further mature and whether variant-derived vaccines can elicit responses to novel epitopes specific to such variants.
View Article and Find Full Text PDFImportance: Due to the emergence of highly transmissible SARS-CoV-2 variants, evaluation of boosters is needed.
Objectives: Evaluate safety and immunogenicity of 100-μg of mRNA-1273 booster dose in adults.
Design: Open-label, Phase 2/3 study.
Rising breakthrough infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in previously immunized individuals have raised concerns for the need for a booster vaccine dose to combat waning antibody levels and new variants. Here we report the results of the open-label, non-randomized part B of a phase 2 trial in which we evaluated the safety and immunogenicity of a booster injection of 50 µg of the coronavirus disease 2019 (COVID-19) vaccine mRNA-1273 in 344 adult participants immunized 6-8 months earlier with a primary series of two doses of 50 µg or 100 µg of mRNA-1273 ( NCT04405076 ). Neutralizing antibody (nAb) titers against wild-type SARS-CoV-2 at 1 month after the booster were 1.
View Article and Find Full Text PDFThe emergence of SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs) with decreased susceptibility to neutralization has generated interest in assessments of booster doses and variant-specific vaccines. Clinical trial participants who received a two-dose primary series of the COVID-19 vaccine mRNA-1273 approximately 6 months earlier entered an open-label phase 2a study ( NCT04405076 ) to evaluate the primary objectives of safety and immunogenicity of a single booster dose of mRNA-1273 or variant-modified mRNAs, including multivalent mRNA-1273.211.
View Article and Find Full Text PDFBackground: Vaccines are urgently needed to prevent the global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We assessed the safety and immunogenicity of vaccine candidate mRNA-1273, encoding the prefusion-stabilized spike protein of SARS-CoV-2.
Methods: This phase 2, randomized, observer-blind, placebo-controlled trial was conducted at 8 sites in the USA, in healthy adults aged ≥18 years with no known history or risk of SARS-CoV-2 infection, and had not previously received an investigational CoV vaccine or treatment.