Pseudomonas aeruginosa is an important nosocomial pathogen that is frequently recalcitrant to available antibiotics, underlining the urgent need for alternative therapeutic options against this pathogen. Targeting virulence functions is a promising alternative strategy as it is expected to generate less-selective resistance to treatment compared to antibiotics. Capitalizing on our nonligand-based benzamide-benzimidazole (BB) core structure compounds reported to efficiently block the activity of the P.
View Article and Find Full Text PDFThe High Pathogenicity Island of Yersinia pseudotuberculosis IP32637 was previously shown to be horizontally transferable as part of a large chromosomal segment. We demonstrate here that at low temperature other chromosomal loci, as well as a non-mobilizable plasmid (pUC4K), are also transferable. This transfer, designated GDT4 (Generalized DNA Transfer at 4°C), required the presence of an IP32637 endogenous plasmid (pGDT4) that carries several mobile genetic elements and a conjugation machinery.
View Article and Find Full Text PDFA significant number of environmental microorganisms can cause serious, even fatal, acute and chronic infections in humans. The severity and outcome of each type of infection depends on the expression of specific bacterial phenotypes controlled by complex regulatory networks that sense and respond to the host environment. Although bacterial signals that contribute to a successful acute infection have been identified in a number of pathogens, the signals that mediate the onset and establishment of chronic infections have yet to be discovered.
View Article and Find Full Text PDFPathogenic bacteria use interconnected multi-layered regulatory networks, such as quorum sensing (QS) networks to sense and respond to environmental cues and external and internal bacterial cell signals, and thereby adapt to and exploit target hosts. Despite the many advances that have been made in understanding QS regulation, little is known regarding how these inputs are integrated and processed in the context of multi-layered QS regulatory networks. Here we report the examination of the Pseudomonas aeruginosa QS 4-hydroxy-2-alkylquinolines (HAQs) MvfR regulatory network and determination of its interaction with the QS acyl-homoserine-lactone (AHL) RhlR network.
View Article and Find Full Text PDFBackground: The Red recombinase system of bacteriophage lambda has been used to inactivate chromosomal genes in various bacteria and fungi. The procedure consists of electroporating a polymerase chain reaction (PCR) fragment that was obtained with a 1- or 3-step PCR protocol and that carries an antibiotic cassette flanked by a region homologous to the target locus into a strain that expresses the lambda Red recombination system.
Results: This system has been modified for use in Pseudomonas aeruginosa.
Long-term antibiotic use generates pan-resistant super pathogens. Anti-infective compounds that selectively disrupt virulence pathways without affecting cell viability may be used to efficiently combat infections caused by these pathogens. A candidate target pathway is quorum sensing (QS), which many bacterial pathogens use to coordinately regulate virulence determinants.
View Article and Find Full Text PDFA new metabolite, 2,4-dihydroxyquinoline (DHQ), was identified in cultures of the bacteria Pseudomonas aeruginosa and Burkholderia thailandensis. We found that the biosynthesis of DHQ correlates with the presence of a functional PqsA, which is a product of the pqsABCDE operon responsible for the synthesis of 4-hydroxy-2-alkylquinolines (HAQs) in P. aeruginosa.
View Article and Find Full Text PDFMvfR (PqsR), a Pseudomonas aeruginosa LysR-type transcriptional regulator, plays a critical role in the virulence of this pathogen. MvfR modulates the expression of multiple quorum sensing (QS)-regulated virulence factors; and the expression of the phnAB and pqsA-E genes that encode functions mediating 4-hydroxy-2-alkylquinolines (HAQs) signalling compounds biosynthesis, including 3,4-dihydroxy-2heptylquinoline (PQS) and its precursor 4-hydroxy-2-heptylquinoline (HHQ). PQS enhances the in vitro DNA-binding affinity of MvfR to the pqsA-E promoter, to suggest it might function as the in vivo MvfR ligand.
View Article and Find Full Text PDFThe horizontal transfer of genetic elements plays a major role in bacterial evolution. The high-pathogenicity island (HPI), which codes for an iron uptake system, is present and highly conserved in various Enterobacteriaceae, suggesting its recent acquisition by lateral gene transfer. The aim of this work was to determine whether the HPI has kept its ability to be transmitted horizontally.
View Article and Find Full Text PDFThe Yersinia high-pathogenicity island (HPI) encodes the siderophore yersiniabactin-mediated iron uptake system. The HPI of Yersinia pseudotuberculosis I has previously been shown to be able to excise precisely from the bacterial chromosome by recombination between the attB-R and attB-L sites flanking the island. However, the nature of the Y.
View Article and Find Full Text PDFFEMS Immunol Med Microbiol
September 2003
A polymerase chain reaction (PCR)-based procedure without any cloning step was developed for a rapid mutagenesis/deletion of chromosomal target genes in Yersinia. For this purpose, a PCR fragment carrying an antibiotic resistance gene flanked by regions homologous to the target locus is electroporated into a recipient strain expressing the highly proficient homologous recombination system encoded by plasmid pKOBEG-sacB. Two PCR procedures were tested to generate an amplification product formed of an antibiotic resistance gene flanked by short (55 bp) or long (500 bp) homology extensions.
View Article and Find Full Text PDFAntimicrob Agents Chemother
June 2002
Deferoxamine, a drug used to treat patients with iron overload, has the capacity to promote systemic Y. enterocolitica infections in humans. The aim of this study was to determine whether deferiprone, the only orally active alternative treatment, has the same potential.
View Article and Find Full Text PDF