This work presents a novel approach to estimate brain functional connectivity networks via generative learning. Due to the complexity and variability of rs-fMRI signal, we consider it as a random variable, and utilize variational autoencoder networks to encode it as a confidence distribution in the latent space rather than as a fixed vector, so as to establish the relationship between them. First, the mean time series of each brain region of interest is mapped into a multivariate Gaussian distribution.
View Article and Find Full Text PDF