Publications by authors named "Bili Seijo"

CD8 + T cells have critical roles in tumor control, but a range of factors in their microenvironment such as low pH can suppress their function. Here, we demonstrate that acidity restricts T-cell expansion mainly through impairing IL-2 responsiveness, lowers cytokine secretion upon re-activation, and reduces the cytolytic capacity of CD8 + T cells expressing low-affinity TCR. We further find decreased mTORC1 signaling activity and c-Myc levels at low pH.

View Article and Find Full Text PDF

The adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2-restricted cancer-testis epitope NY-ESO-1157-165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT.

View Article and Find Full Text PDF

To date, no immunotherapy approaches have managed to fully overcome T-cell exhaustion, which remains a mandatory fate for chronically activated effector cells and a major therapeutic challenge. Understanding how to reprogram CD8 tumor-infiltrating lymphocytes away from exhausted effector states remains an elusive goal. Our work provides evidence that orthogonal gene engineering of T cells to secrete an interleukin (IL)-2 variant binding the IL-2Rβγ receptor and the alarmin IL-33 reprogrammed adoptively transferred T cells to acquire a novel, synthetic effector state, which deviated from canonical exhaustion and displayed superior effector functions.

View Article and Find Full Text PDF

For structural, biochemical, or pharmacological studies, it is required to have pure RNA in large quantities. We previously devised a generic approach that allows for efficient in vivo expression of recombinant RNA in Escherichia coli. We have extended the "tRNA scaffold" method to RNA-protein coexpression in order to express and purify RNA by affinity in native condition.

View Article and Find Full Text PDF

Limited clinical benefit has been demonstrated for chimeric antigen receptor (CAR) therapy of solid tumors, but coengineering strategies to generate so-called fourth-generation (4G) CAR-T cells are advancing toward overcoming barriers in the tumor microenvironment (TME) for improved responses. In large part due to technical challenges, there are relatively few preclinical CAR therapy studies in immunocompetent, syngeneic tumor-bearing mice. Here, we describe optimized methods for the efficient retroviral transduction and expansion of murine T lymphocytes of a predominantly central memory T cell (TCM cell) phenotype.

View Article and Find Full Text PDF

Angiogenesis is tightly regulated through the binding of vascular endothelial growth factors (VEGFs) to their receptors (VEGFRs). In this context, we showed that human VEGFR1 domain 2 crystallizes in the presence of Zn2+, Co2+ or Cu2+ as a dimer that forms via metal-ion interactions and interlocked hydrophobic surfaces. SAXS, NMR and size exclusion chromatography analyses confirm the formation of this dimer in solution in the presence of Co2+, Cd2+ or Cu2+.

View Article and Find Full Text PDF

For structural, biochemical or pharmacological studies, it is required to have pure RNA in large quantities. We previously devised a generic approach that allows efficient in vivo expression of recombinant RNA in Escherichia coli. We have extended the "tRNA scaffold" method to RNA/protein co-expression in order to express and purify RNA by affinity in native condition.

View Article and Find Full Text PDF

TmRNA is an abundant RNA in bacteria with tRNA and mRNA features. It is specialized in trans-translation, a translation rescuing system. We demonstrate that its partner protein SmpB binds the tRNA-like region (TLD) in vivo and chaperones the fold of the TLD-H2 region.

View Article and Find Full Text PDF

RNA has emerged as a major player in many cellular processes. Understanding these processes at the molecular level requires homogeneous RNA samples for structural, biochemical and pharmacological studies. We previously devised a generic approach that allows efficient in vivo expression of recombinant RNA in Escherichia coli.

View Article and Find Full Text PDF

In bacteria, trans-translation rescues stalled ribosomes by the combined action of tmRNA (transfer-mRNA) and its associated protein SmpB. The tmRNA 5' and 3' ends fold into a tRNA-like domain (TLD), which shares structural and functional similarities with tRNAs. As in tRNAs, the UUC sequence of the T-arm of the TLD is post-transcriptionally modified to m (5)UψC.

View Article and Find Full Text PDF

Protein-protein interactions play a central role in medicine, and their modulation with small organic compounds remains an enormous challenge. Because it has been noted that the macromolecular complexes modulated to date have a relatively pronounced binding cavity at the interface, we decided to perform screening experiments over the vascular endothelial growth factor receptor (VEGFR), a validated target for antiangiogenic treatments with a very flat interface. We focused the study on the VEGFR-1 D2 domain, and 20 active compounds were identified.

View Article and Find Full Text PDF

A small library of 1,5-triazole derivatives linking a diaminocyclopentadiol and aromatic ketones has been prepared and screened using NMR and fluorescent techniques against tRNA(Lys)(3), the HIV reverse transcription primer. The comparison of their binding properties to those of their 1,4-triazole isomers, previously discovered in a fragment-based approach, outlines the influence of the linker on affinity and binding selectivity in such an approach.

View Article and Find Full Text PDF

In eubacteria, the formyl group of nascent polypeptides is removed by peptide deformylase protein (PDF). This is the reason why PDF has received special attention in the course of the search for new antibacterial agents. We observed by NMR that actinonin, a natural inhibitor, induced drastic changes in the HSQC spectrum of E.

View Article and Find Full Text PDF

A fragment-based approach for the synthesis of ligands of tRNA(Lys) (3), the HIV reverse-transcription primer, is described. The use of NMR spectroscopy has proved to be very useful in this approach, not only to detect low-affinity complexes between small compounds and RNA, but also to provide information on their binding mode and on the way they can be connected. This NMR-spectroscopy-guided analysis enabled us to design micromolar ligands after the optimisation and connection of millimolar fragments with an appropriate linker.

View Article and Find Full Text PDF