Publications by authors named "Bilgen Ekim"

The ribosomal protein S6K (S6 kinase) represents an extensively studied effector of the TORC1 [TOR (target of rapamycin) complex 1], which possesses important yet incompletely defined roles in cellular and organismal physiology. TORC1 functions as an environmental sensor by integrating signals derived from diverse environmental cues to promote anabolic and inhibit catabolic cellular functions. mTORC1 (mammalian TORC1) phosphorylates and activates S6K1 and S6K2, whose first identified substrate was rpS6 (ribosomal protein S6), a component of the 40S ribosome.

View Article and Find Full Text PDF

The mammalian target of rapamycin complex 1 (mTORC1) functions as an environmental sensor to promote critical cellular processes such as protein synthesis, cell growth, and cell proliferation in response to growth factors and nutrients. While diverse stimuli regulate mTORC1 signaling, the direct molecular mechanisms by which mTORC1 senses and responds to these signals remain poorly defined. Here we investigated the role of mTOR phosphorylation in mTORC1 function.

View Article and Find Full Text PDF

The mammalian target of rapamycin (mTOR) Ser/Thr kinase signals in at least two multiprotein complexes distinguished by their different partners and sensitivities to rapamycin. Acute rapamycin inhibits signaling by mTOR complex 1 (mTORC1) but not mTOR complex 2 (mTORC2), which both promote cell growth, proliferation, and survival. Although mTORC2 regulation remains poorly defined, diverse cellular mitogens activate mTORC1 signaling in a manner that requires sufficient levels of amino acids and cellular energy.

View Article and Find Full Text PDF

The rapamycin-sensitive mTOR complex 1 (mTORC1) promotes protein synthesis, cell growth, and cell proliferation in response to growth factors and nutritional cues. To elucidate the poorly defined mechanisms underlying mTORC1 regulation, we have studied the phosphorylation of raptor, an mTOR-interacting partner. We have identified six raptor phosphorylation sites that lie in two centrally localized clusters (cluster 1, Ser(696)/Thr(706) and cluster 2, Ser(855)/Ser(859)/Ser(863)/Ser(877)) using tandem mass spectrometry and generated phosphospecific antibodies for each of these sites.

View Article and Find Full Text PDF

The mammalian target of rapamycin (mTOR) complex 1 (mTORC1) functions as a rapamycin-sensitive environmental sensor that promotes cellular biosynthetic processes in response to growth factors and nutrients. While diverse physiological stimuli modulate mTORC1 signaling, the direct biochemical mechanisms underlying mTORC1 regulation remain poorly defined. Indeed, while three mTOR phosphorylation sites have been reported, a functional role for site-specific mTOR phosphorylation has not been demonstrated.

View Article and Find Full Text PDF