Purpose: An abdominal aortic aneurysm (AAA) is a dilation of the aorta over its normal diameter (> 3 cm). The minimally invasive treatment adopted uses a stent graft to be deployed into the aneurysm by a catheter to flow blood through it. However, this approach demands frequent monitoring using imaging modalities that involve radiation and contrast agents.
View Article and Find Full Text PDFConventional fertilizers face environmental and economic challenges due to their high solubility, leading to significant losses via runoff and leachate. This study presents a biodegradable hydrogel, synthesized from lignin and polyvinyl alcohol (PVA), designed as an eco-friendly carrier for struvite (fertilizer) with controlled phosphate release. The hydrogel was analysed through scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC).
View Article and Find Full Text PDFAdrenal gland-induced hypertension results from underlying adrenal gland disorders including Conn's syndrome, Cushing's syndrome, and Pheochromocytoma. These adrenal disorders are a risk for cardiovascular and renal morbidity and mortality. Clinically, treatment for adrenal gland-induced hypertension involves a pharmaceutical or surgical approach.
View Article and Find Full Text PDFOver the past two decades, there has been extensive research into surveillance methods for the post-endovascular repair of abdominal aortic aneurysms, highlighting the importance of these technologies in supplementing or even replacing conventional image-screening modalities. This review aims to provide an overview of the current status of alternative surveillance solutions for endovascular aneurysm repair, while also identifying potential aneurysm features that could be used to develop novel monitoring technologies. It offers a comprehensive review of these recent clinical advances, comparing new and standard clinical practices.
View Article and Find Full Text PDFBirth asphyxia is a potential cause of death that is also associated with acute and chronic morbidities. The traditional and immediate approach for monitoring birth asphyxia (i.e.
View Article and Find Full Text PDFAbdominal aortic aneurysm (AAA) is a dilation of the aorta artery larger than its normal diameter (>3 cm). Endovascular aneurysm repair (EVAR) is a minimally invasive treatment option that involves the placement of a graft in the aneurysmal portion of the aorta artery. This treatment requires multiple follow-ups with medical imaging, which is expensive, time-consuming, and resource-demanding for healthcare systems.
View Article and Find Full Text PDFCardiac catheter ablation (CCA) is a common method used to correct cardiac arrhythmia. Pulsed Field Ablation (PFA) is a recently-adapted CCA technology whose ablation is dependent on electrode and waveform parameters (factors). In this work, the use of the Design of Experiments (DoE) methodology is investigated for the design and optimization of a PFA device.
View Article and Find Full Text PDFAsphyxia, a leading cause of illness and death in newborns, can be improved by early detection and management. Arterial blood gas (ABG) analysis is commonly used to diagnose and manage asphyxia, but it is invasive and carries risks. Dermal interstitial fluid (ISF) is an alternative physiological fluid that can provide valuable information about a person's health.
View Article and Find Full Text PDFCardiac wireless implantable medical devices (CWIMD) have brought a paradigm shift in monitoring and treating various cardiac conditions, including heart failure, arrhythmias, and hypertension. One of the key elements in CWIMD is the implant antenna which uses radio frequency (RF) technology to wirelessly communicate and transmit data to external devices. However, wireless communication with a deeply implanted antenna using RF can be challenging due to the significant loss of electromagnetic (EM) signal at the air-skin interface, and second, due to the propagation and reflection of EM waves from different tissue boundaries.
View Article and Find Full Text PDFBioengineering (Basel)
January 2023
Wireless implantable medical devices (WIMDs) have seen unprecedented progress in the past three decades. WIMDs help clinicians in better-understanding diseases and enhance medical treatment by allowing for remote data collection and delivering tailored patient care. The wireless connectivity range between the external reader and the implanted device is considered one of the key design parameters in WIMD technology.
View Article and Find Full Text PDFThe wireless monitoring of key physiological parameters such as heart rate, respiratory rate, temperature, and pressure can aid in preventive healthcare, early diagnosis, and patient-tailored treatment. In wireless implantable sensors, the distance between the sensor and the reader device is prone to be influenced by the operating frequency, as well as by the medium between the sensor and the reader. This manuscript presents an ex vivo investigation of the wireless linkage between an implantable sensor and an external reader for medical applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2021
Self-assembled polymer vesicles have emerged as exciting and promising materials for their potential application in drug delivery, but the dynamics of stimuli-responsive polymers in these areas with pendant functionality in order to understand the structure-property relationship under different physicochemical conditions is still open to discussion. In this work, nitroxide radical-containing copolymers were synthesized and utilized to investigate local dynamics in their vesicular assemblies. Herein, electron paramagnetic resonance (EPR) spectroscopy was applied to reveal the smart supramolecular vesicular structure and polymer chain dynamics in stimuli-responsive controlled assemblies by considering molecular-level interactions.
View Article and Find Full Text PDFThe dielectric properties of bones are found to be influenced by the demineralisation of bones. Therefore, microwave imaging (MWI) can be used to monitor in vivo dielectric properties of human bones and hence aid in the monitoring of osteoporosis. This paper presents the feasibility analysis of the MWI device for monitoring osteoporosis.
View Article and Find Full Text PDFHypothesis: Organic radical polymers with tailored pendant functionalities have emerged as exciting and promising materials for their application versatility. Moreover, eco-friendly polymer-based organic nanomaterials with redox-active pendant side groups can replace the harmful heavy metal-based inorganic materials. On the other hand, self-assembled nanomaterials are of great interest and attracted more attention recently for their promising application in different advanced fields, but it is yet challenging to predict suitable hydrophilic-lipophilic balance (HLB) for stimuli-responsive random copolymers assembly due to structural irregularity.
View Article and Find Full Text PDFMicrowave tomography (MWT) can be used as an alternative modality for monitoring human bone health. Studies have found a significant dielectric contrast between healthy and diseased human trabecular bones. A set of diverse bone phantoms were developed based on single-pole Debye parameters of osteoporotic and osteoarthritis human trabecular bones.
View Article and Find Full Text PDFAntibiotics discovery was a significant breakthrough in the field of therapeutic medicines, but the over (mis)use of such antibiotics (in parallel) caused the increasing number of resistant bacterial species at an ever-higher rate. This study was thus devised to assess the multi-drug resistant bacteria present in sanitation-related facilities in human workplaces. In this regard, samples were collected from different gender, location, and source-based facilities, and subsequent antibiotic sensitivity testing was performed on isolated bacterial strains.
View Article and Find Full Text PDFDifferent hydrogels of poly(acrylamide-co-3-acrylamido phenylboronic acid-co-chitosan grafted maleic acid) (P(AM-co-AAPBA-co-CSMA)s) were synthesized using poly(ethylene glycol) diacrylate (PEGDA) as a crosslinker to serve for glucose sensing and insulin delivery. The structure and morphology of the hydrogels, named as CSPBA were studied by FTIR and SEM, while the mechanical properties were tested using dynamic mechanical analysis (DMA) and universal testing machine. The prepared hydrogels shrinked at low glucose concentration due to the 2:1 boronate-glucose binding, and swelled at high glucose concentration because of 1:1 boronate-glucose complexation.
View Article and Find Full Text PDFThe objective of this study is to determine whether in vitro dielectric properties of human trabecular bones, can distinguish between osteoporotic and osteoarthritis patients' bone samples. Specifically this study enlightens intra-patient variation of trabecular bone microarchitecture and dielectric properties, inter-disease comparison of bone dielectric properties, and finally establishes the correlation to traditional bone histomorphometry parameter (bone volume fraction) for diseased bone tissue. Bone cores were obtained from osteoporotic and osteoarthritis patients (n = 12).
View Article and Find Full Text PDFMicrobially enhanced availability and phytoextraction is a promising technique for phytoremediation of lead (Pb). In this study, Pb resistant strains were isolated and investigated for potential effects on plant growth and Pb phytoextraction. Incubation experiments were carried for inoculated and un-inoculated soil containing different levels of Pb.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2019
The dielectric properties are key parameters that quantify the interaction between electromagnetic waves and human biological tissues. In particular, the development of electromagnetic-based medical technologies rely on knowledge of the dielectric properties of bone, specifically for applications such as electrical stimulation and bone health monitoring. Electrical stimulation is used in clinics to promote the healing of bone fractures, treating non-unions, congenital pseudarthrosis, bone regeneration and during bone implant procedures.
View Article and Find Full Text PDFOsteoporosis is one of the most common diseases that leads to bone fractures. Dual-energy X-ray absorptiometry is currently employed to measure the bone mineral density and to diagnose osteoporosis. Alternatively, the dielectric properties of bones are found to be influenced by bone mineral density; hence, dielectric properties of bones may potentially be used to diagnose osteoporosis.
View Article and Find Full Text PDFBackground: The provision of health and wellness care is undergoing an enormous transformation. A key element of this revolution consists in prioritizing prevention and proactivity based on the analysis of people's conducts and the empowerment of individuals in their self-management. Digital technologies are unquestionably destined to be the main engine of this change, with an increasing number of domain-specific applications and devices commercialized every year; however, there is an apparent lack of frameworks capable of orchestrating and intelligently leveraging, all the data, information and knowledge generated through these systems.
View Article and Find Full Text PDF