Publications by authors named "Bilal Aleiwi"

Introduction: We previously identified niclosamide as a promising repurposed drug candidate for hepatocellular carcinoma (HCC) treatment. However, it is poorly water soluble, limiting its tissue bioavailability and clinical application. To overcome these challenges, we developed an orally bioavailable self-microemulsifying drug delivery system encapsulating niclosamide (Nic-SMEDDS).

View Article and Find Full Text PDF

MmpL3 is a protein that is required for the survival of bacteria that cause tuberculosis (TB) and nontuberculous mycobacterial (NTM) infections. This report describes the discovery and characterization of a new small molecule, MSU-43085, that targets MmpL3 and is a potent inhibitor of (Mtb) and survival. MSU-43085 is shown to be orally bioavailable and efficacious in an acute model of Mtb infection.

View Article and Find Full Text PDF

Ornithine decarboxylase (ODC) is the rate-limiting enzyme for the synthesis of polyamines (PAs). PAs are oncometabolites that are required for proliferation, and pharmaceutical ODC inhibition is pursued for the treatment of hyperproliferative diseases, including cancer and infectious diseases. The most potent ODC inhibitor is 1-amino-oxy-3-aminopropane (APA).

View Article and Find Full Text PDF

(1) Background: Notwithstanding numerous therapeutic advances, 176,000 deaths from breast and lung cancers will occur in the United States in 2021 alone. The tumor microenvironment and its modulation by drugs have gained increasing attention and relevance, especially with the introduction of immunotherapy as a standard of care in clinical practice. Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and upon ligand binding, function as transcription factors to modulate multiple cell functions.

View Article and Find Full Text PDF

Effective drugs are needed for lung cancer, as this disease remains the leading cause of cancer-related deaths. Rexinoids are promising drug candidates for cancer therapy because of their ability to modulate genes involved in inflammation, cell proliferation or differentiation, and apoptosis through activation of the retinoid X receptor (RXR). The only currently FDA-approved rexinoid, bexarotene, is ineffective as a single agent for treating epithelial cancers and induces hypertriglyceridemia.

View Article and Find Full Text PDF

(Mtb) possesses a two-component regulatory system, DosRST, that enables Mtb to sense host immune cues and establish a state of nonreplicating persistence (NRP). NRP bacteria are tolerant to several antimycobacterial drugs and are thought to play a role in the long course of tuberculosis therapy. Previously, we reported the discovery of six novel chemical inhibitors of DosRST, named HC101A-106A, from a whole cell, reporter-based phenotypic high throughput screen.

View Article and Find Full Text PDF

A stereocontrolled first total synthesis of muraymycin D1 (1) has been achieved. The synthetic route is highly stereoselective, featuring (1) selective β-ribosylation of the C2-methylated amino ribose, (2) selective Strecker reaction, and (3) ring-opening reaction of a diastereomeric mixture of a diaminolactone to synthesize muraymycidine (epi-capreomycidine). The acid-cleavable protecting groups for secondary alcohol and uridine ureido nitrogen are applied for simultaneous deprotections with the Boc and Bu groups.

View Article and Find Full Text PDF

Capuramycin and its congeners are considered to be important lead molecules for the development of a new drug for multidrug-resistant (MDR) Mycobacterium tuberculosis infections. Extensive structure-activity relationship studies of capuramycin to improve the efficacy have been limited because of difficulties in selectively chemically modifying the desired position(s) of the natural product with biologically interesting functional groups. We have developed efficient syntheses of capuramycin and its analogues by using new protecting groups, derived from the chiral (chloro-4-methoxyphenyl)(chlorophenyl)methanols, for the uridine ureido nitrogen and primary alcohol.

View Article and Find Full Text PDF

We have realized that -formylations of free amines of some drug leads can improve PK/PD property of parent molecules without decreasing their biological activities. In order to selectively formylate amines of polyfunctional molecules, we have sought a mild and convenient formylation reaction. In our screening of -formylation of an α-amino acid, L-phenylalanine, none of formylation conditions reported to date yielded the desired HCO-L-Phe-OH with satisfactory yield.

View Article and Find Full Text PDF

Oxyma and an oxyma derivative, (2,2-dimethyl-1,3-dioxolan-4-yl)methyl 2-cyano-2-(hydroxyimino)acetate (5b), displayed a remarkable effect on selective esterifications of primary alcohols. A wide range of carboxylic acids could be esterified with primary alcohols by using EDCI, NaHCO(3), and Oxyma or Oxyma derivative 5b in 5% H(2)O-CH(3)CN. Oxyma derivative 5b is particularly useful, since it could be removed after the reaction via a simple basic or an acidic aqueous workup procedure.

View Article and Find Full Text PDF

The benzyloxymethyl (BOM) group has been utilized widely in syntheses of a variety of natural and non-natural products. The BOM group is also one of few choices to protect uridine ureido nitrongen. However, hydrogenolytic cleavage of the BOM group of uridine derivatives has been unrealizably performed via heterogeneous conditions using Pd catalysts.

View Article and Find Full Text PDF

One of the key constituents of the muraymycins is the 6-membered cyclic guanidine, (2S,3S)-muraymycidine (or epi-capreomycidine). In order to diversify the structure of the oligopeptide moiety of the muraymycins for thorough structure-activity relationship studies, we have developed a highly stereoselective synthesis of ureidomuraymycidine derivatives with the lactone 4a.

View Article and Find Full Text PDF