Publications by authors named "Bikramjit Sharma"

Despite the broadly acknowledged importance of solvation effects on measured UV/Vis spectra in the context of solvatochromism or chemical reactions in solution, it is still an open challenge to calculate UV/Vis spectra with predictive accuracy. This is particularly true when it comes to the impact of nuclear quantum effects on these experimental observables. In the present work, we calculate the UV/Vis absorption spectrum of indole in aqueous solution with a combination of a correlated wavefunction method for computing electronic excitation energies and enhanced path integral simulations for rigorous sampling of nuclear configurations including the quantum effects in solution.

View Article and Find Full Text PDF

Free radical species are used as spin labels in electron paramagnetic resonance (EPR) spectroscopy of biomolecular systems in water, for instance in the frame of Overhauser dynamic nuclear polarization (ODNP) relaxometry to probe the local hydration water dynamics close to protein surfaces in aqueous environments. Widely used in this context are nitroxide spin probes such as TEMPO, PROXYL or MTSL derivatives. Here, we study the THz spectroscopy of HMI (2,2,3,4,5,5-HexaMethylImidazolidin-1-oxyl) in water at ambient conditions which has been recently investigated as to how its EPR properties depend on its solvation pattern in water.

View Article and Find Full Text PDF

Interpreting NMR experiments benefits from first-principles predictions of chemical shifts. Reaching the accuracy limit of theory is relevant for unambiguous structural analysis and dissecting theoretical approximations. Since accurate chemical shift measurements are based on using internal reference compounds such as trimethylsilylpropanesulfonate (DSS), a detailed comparison of experimental with theoretical data requires simultaneous consideration of both target and reference species ensembles in the same solvent environment.

View Article and Find Full Text PDF

Nitroxides are common EPR sensors of microenvironmental properties such as polarity, numbers of H-bonds, pH, and so forth. Their solvation in an aqueous environment is facilitated by their high propensity to form H-bonds with the surrounding water molecules. Their - and -tensor elements are key parameters to extracting the properties of their microenvironment.

View Article and Find Full Text PDF

The impact of sampling methods on spectral broadening in the gas phase and on the convergence of spectra in aqueous solution when using microsolvation, continuum solvation, and hybrid models is studied using pyrazine as a test case. For the sake of comparing classical Maxwell-Boltzmann and Wigner samplings in the gas phase, static and time-resolved X-ray absorption spectra after photoexcitation to the lowest B(*) state, as well as the static UV-vis absorption spectrum, are considered. In addition, the UV-vis absorption spectrum of pyrazine in aqueous solution is also computed in order to systematically investigate its convergence with the number of explicitly included solvent shells with and without taking bulk solvation effects into account with the conductor-like screening model to represent implicit water beyond such explicit solute complexes.

View Article and Find Full Text PDF

The isotropic hyperfine coupling constant (HFCC, ) of a pH-sensitive spin probe in a solution, HMI (2,2,3,4,5,5-hexamethylimidazolidin-1-oxyl, CHNO) in water, is computed using an ensemble of state-of-the-art computational techniques and is gauged against X-band continuous wave electron paramagnetic resonance (EPR) measurement spectra at room temperature. Fundamentally, the investigation aims to delineate the cutting edge of current first-principles-based calculations of EPR parameters in aqueous solutions based on using rigorous statistical mechanics combined with correlated electronic structure techniques. In particular, the impact of solvation is described by exploiting fully atomistic, RISM integral equation, and implicit solvation approaches as offered by ab initio molecular dynamics (AIMD) of the periodic bulk solution (using the spin-polarized revPBE0-D3 hybrid functional), embedded cluster reference interaction site model integral equation theory (EC-RISM), and polarizable continuum embedding (using CPCM) of microsolvated complexes, respectively.

View Article and Find Full Text PDF

Electrostatic interaction of the solvent with the solute and fluctuations of the solvent configurations may make excitation energies of the solute different from those in the gas phase. These effects may dominate photoinduced or chemical reaction dynamics in solution systems and can be observed as shifts or broadening of peaks in absorption spectra. In this work, the nitrogen K-edge X-ray absorption spectra were measured for pyridazine in the gas phase and in aqueous solution.

View Article and Find Full Text PDF

The iodate ion has an anisotropic structure and charge distribution. It has a pyramidal shape with the iodine atom located at the peak of the pyramid. The water molecules interact differently with the positively charged iodine and the negatively charged oxygen atoms of this anion, giving rise to two distinct solvation shells.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists created new compounds using a special three-part protein (a tripeptide) that has a unique ingredient called thiazolylalanine.
  • They made gold and mercury compounds that were studied for their structure and stability using different scientific methods.
  • One of the gold compounds was found to help fight breast cancer by causing cancer cells to die, and they could see it getting inside the cells using a special light method.
View Article and Find Full Text PDF

The structure and dynamics of water molecules around the carboxylate and amino groups of γ-aminobutyric acid (GABA), a primary neurotransmitter in mammals, are investigated by means of ab initio molecular dynamics simulation. Zwitterionic GABA has two major conformations in water, namely, the open and the closed conformations. The angle-averaged one-dimensional structures of water in the solvation shells around the carboxylate and amino groups are found to be quite similar for the closed and open conformations of the solute.

View Article and Find Full Text PDF
Article Synopsis
  • - GABA, a key neurotransmitter, has two major forms (closed and open) and previous studies showed conflicting results regarding which conformation is more stable in water.
  • - Through metadynamics simulation, researchers discovered multiple open forms of GABA and one closed form, with some open forms being equally or more stable than the closed one.
  • - Molecular dynamics simulations were conducted to explore how these different GABA conformers interconvert in water, examine their dipole moments, and connect these findings to experimental data.
View Article and Find Full Text PDF

The structural nature of the solvation shells of an iodate ion, which is known to be a polyoxy-anion with a large cationic centre, is investigated by means of Born-Oppenheimer molecular dynamics (BOMD) simulations using BLYP and the dispersion corrected BLYP-D3 functionals. The iodate ion is found to have two distinct solvation regions around the positively charged iodine (iodine solvation shell or ISS) and the negatively charged oxygens (oxygen solvation shell or OSS). We have looked at the spatial, orientational, and hydrogen bond distributions of water in the two solvation regions.

View Article and Find Full Text PDF

The solvation structure and dynamics of a bromate (BrO) ion in water are studied by means of Born-Oppenheimer molecular dynamics simulations at two different temperatures using the Becke-Lee-Yang-Parr functional with Grimme D3 dispersion corrections. The bromate ion possesses a pyramidal structure, and it has two types of solvation sites, namely, the bromine and oxygen atoms. We have looked at different radial and orientational distributions of water molecules around the bromate ion and also investigated their hydrogen bonding properties.

View Article and Find Full Text PDF

The structure and dynamics of solvation shells of the phosphate ion in deuterated water are studied by means of Born-Oppenheimer molecular dynamics simulation. The total number of molecules in the first and second solvation shells is found to be close to the effective hydration number reported experimentally. The OD bonds that are hydrogen bonded to the phosphate ion are found to be red shifted as compared to bulk water, which is consistent with experimental results.

View Article and Find Full Text PDF

Benzyl substitution on ureido nitrogens of biotin led to manifestation of aggregation-induced emission, which was studied by steady-state fluorescence, microscopy, and TD-DFT, providing a rationale into the observed photophysical behavior. Besides exhibiting solvatochromism, the biotin derivatives revealed emission peaks centered at ∼430 and 545 nm, which has been attributed to the π-π stacking interactions. Our TD-DFT results also correlate the spectroscopic data and quantify the nature of transitions involved.

View Article and Find Full Text PDF