For several decades, the development of potential flexible electronics, such as electronic skin, wearable technology, environmental monitoring systems, and the internet of Things network, has been emphasized. In this context, piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs) are highly regarded due to their simple design, high output performance, and cost-effectiveness. On a smaller scale, self-powered sensor research and development based on piezo-triboelectric hybrid nanogenerators have lately become more popular.
View Article and Find Full Text PDFThe present work entails the synthesis of thermally modified graphitic carbon nitride (GCN) using a two-step thermal treatment procedure and its subsequent use in the photocatalytic reduction of toxic pollutants such as rhodamine B dye (RhB) and chromium (VI) (Cr(VI)) from aquatic environments. The as-synthesised exfoliated GCN (GCNX) is characterised by X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller analysis (BET), diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). These characterisations helped to elucidate the phase formation, chemical structure, composition, surface area, optical properties, and morphology of the sample.
View Article and Find Full Text PDFUsing rigorous calculations within the framework of phonon Boltzmann transport theory, we have carried out a detailed investigation to probe the effects of uniform bi-axial strain and finite size on the lattice thermal conductivity () of monolayer AlN. We show that implementation of bi-axial tensile strain can shoot up the value of of monolayer AlN by a large amount unlike in the case of analogous 2D materials. The value of for monolayer AlN is calculated to be 306.
View Article and Find Full Text PDFUsing extensive first principles protocols, a systematic investigation is performed to probe the oxygen reduction reaction (ORR) mechanism on nitrogen (N) doped graphynes (Gys, e. g. αGy, βGy, γGy and 6,6,12Gy) and graphdiyne (Gdy) in alkaline medium.
View Article and Find Full Text PDFPhotocatalytic activity of low band gap semiconductor largely restrained by high recombination rate of photogenerated charge carriers. To enhance the catalytic performance numerous protocols were adopted amongst which designing of novel hybrid via coupling of semiconductors are very intriguing from modest application point of view. Here, we report facile realization of type II heterojunctions embracing polymeric graphitic carbon nitride (g-CN/GCN) and all-inorganic cesium lead halide perovskite (CsPbBrCl) for degradation complex organic effluents under visible-light illumination.
View Article and Find Full Text PDFThis work highlights the synthesis of zinc blende ZnCdS ternary solid solutions with a tunable bandgap. Composition dependent band gaps are realized due to the effective band edge tuning of the solid solutions which in turn show decent photocatalytic behaviour. The bandgap of ZnCdS increases as Zn composition increases.
View Article and Find Full Text PDFHerein, methylammonium lead triiodide (CHNHPbI) nanorods and nanocrystals were prepared by a facile room-temperature wet chemical method via simple variation of the synthesis parameters. Proper phase formation was confirmed by X-ray diffraction studies, whereas the morphological features were investigated using field emission scanning electron microscopy and transmission electron microscopy. The bonding information and the presence of organic functional groups within the synthesized nanostructures were confirmed using Fourier transform infrared spectroscopy.
View Article and Find Full Text PDFDispersive force corrected density functional theory is used to map the oxygen reduction reaction (ORR) kinetics of six kinds of graphyne (Gy) and graphdiyne (Gdy) systems (namely αGy, βGy, γGy, δGy, 6,6,12Gy, RGy and Gdy) with substitutional boron (B) atom doping. To this end, the most favorable sites for B doping of each structures are determined by comparing their formation energies and then the best configuration for di-oxygen (O2) adsorption is computed by analyzing the corresponding adsorption energies. Even though oxygen adsorption is found to be energetically favorable on all of these and all Gys and Gdy are found to distinctly favor the four electron pathways for ORR, a reaction scheme with monotonically exothermic ΔG is observed only for B doped RGy.
View Article and Find Full Text PDF