Ruthenium(II)-catalyzed synthesis of π-conjugated fused imidazo[1,5-a]quinolin-2-ium derivatives have been achieved via C-H activation of quinoline-functionalized NHC (NHC=N-heterocyclic carbene) and oxidative coupling with internal alkynes. The reaction occurred with high efficiency, broad substrate scope, tolerates a wide range of functional groups and utilized into a gram-scale. Synthetic applications of the coupled product have been exemplified in the late-stage derivatization of various highly functionalized scaffolds.
View Article and Find Full Text PDFC-C bond forming reaction of ketone with aldehyde is well-studied for the synthesis of α, β-unsaturated ketones, however, the reaction with two different ketones to unsaturated carbonyl compound has not yet been systematically studied. Probably due to the relatively low reactivity of ketones as electrophiles (aldol acceptors), its propensity for retro-aldol reaction. The reactions often suffer from unsatisfactory chemoselectivity (self- vs.
View Article and Find Full Text PDFA copper-catalyzed oxidative dehydrogenative reaction of quinoline -oxides with donor-acceptor cyclopropanes has been demonstrated to construct C2-alkylated quinolines containing a γ-keto diester motif. The use of molecular oxygen as an oxidant, excellent site-selectivity, and good functional group tolerance are the important features in this process. The preliminary mechanistic studies demonstrate that the catalyst plays a dual role as a Lewis acid and a redox catalyst.
View Article and Find Full Text PDFAn operationally simple method for synthesizing 2-amino azines [3+2] dipolar cycloaddition of azine -oxide with carbodiimide has been demonstrated. The reaction can proceed smoothly under simple heating conditions without any transition metal catalyst, activator, base, and solvent. This transformation demonstrates a broad substrate scope and produces CO as the only co-product.
View Article and Find Full Text PDFHerein, a phosphine-free pincer ruthenium(III) catalyzed β-alkylation of secondary alcohols with primary alcohols to α-alkylated ketones and two different secondary alcohols to β-branched ketones are reported. Notably, this transformation is environmentally benign and atom efficient with HO and H gas as the only byproducts. The protocol is extended to gram-scale reaction and for functionalization of complex vitamin E and cholesterol derivatives.
View Article and Find Full Text PDFBoric acid promoted transfer hydrogenation of substituted quinolines to synthetically versatile 1,2,3,4-tetrahydroquinolines (1,2,3,4-THQs) was described under mild reaction conditions using a Hantzsch ester as a mild organic hydrogen source. This methodology is practical and efficient, where isolated yields are excellent and reducible functional groups are well tolerated in the N-heteroarene moiety. The reaction parameters and tentative mechanistic pathways are demonstrated by various control experiments and NMR studies.
View Article and Find Full Text PDF