We present a study of the abstraction of alkyl hydrogen atoms from the β and α positions of ethanol by the CN radical in solution using the Empirical Valence Bond (EVB) method. We have built separate 2 × 2 EVB models for the H and H reactions, where the atom transfer is parameterized using ab initio calculations. The intra- and intermolecular potentials of the reactant and product molecules were modelled with the General AMBER Force Field, with some modifications.
View Article and Find Full Text PDFIf a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor Φ is correlated with the strength of the intramolecular hydrogen bonds.
View Article and Find Full Text PDFThis work considers how the properties of hydrogen bonded complexes, X-H⋯Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O-H⋯O complexes is used.
View Article and Find Full Text PDF