Oxide interfaces have enormous potential for future electronics with many applications, such as large spin Hall conductance, phase transitions, topological states, and superconductivity. However, previous investigations have predominantly focused on gigahertz frequencies; whilst the possibilities to fabricate devices operational at terahertz frequencies are demonstrated. A model solution is proposed employing 5d rare-earth, strontium iridate (SrIrO) heterostructure with cobalt (Co) ultrathin layers.
View Article and Find Full Text PDFThe phytohormone gibberellic acid (GA) is critical for environmentally sensitive plant development including germination, skotomorphogenesis, and flowering. The Förster resonance energy transfer biosensor GIBBERELLIN PERCEPTION SENSOR1, which permits single-cell GA measurements in vivo, has been used to observe a GA gradient correlated with cell length in dark-grown, but not light-grown, hypocotyls. We sought to understand how light signaling integrates into cellular GA regulation.
View Article and Find Full Text PDFFragrance plays a crucial role in the daily lives. Its importance spans various sectors, from therapeutic purposes to personal care, making the understanding and accurate identification of fragrances essential. To fully harness the potential of fragrances, efficient and precise fragrance sensing and identification are necessary.
View Article and Find Full Text PDFCarbon quantum dots (CQDs) have versatile applications in luminescence, whereas identifying optimal synthesis conditions has been challenging due to numerous synthesis parameters and multiple desired outcomes, creating an enormous search space. In this study, we present a novel multi-objective optimization strategy utilizing a machine learning (ML) algorithm to intelligently guide the hydrothermal synthesis of CQDs. Our closed-loop approach learns from limited and sparse data, greatly reducing the research cycle and surpassing traditional trial-and-error methods.
View Article and Find Full Text PDFThe hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide (2H-MoS) presents a significant hurdle in realizing its full potential applications. Here, we utilize theoretical calculations to predict possible functionalized graphene quantum dots (GQDs), which can enhance HER activity of bulk MoS. Subsequently, we design a functionalized GQD-induced in-situ bottom-up strategy to fabricate near atom-layer 2H-MoS nanosheets mediated with GQDs (ALQD) by modulating the concentration of electron withdrawing/donating functional groups.
View Article and Find Full Text PDFDue to its inversion-broken triple helix structure and the nature of Weyl semiconductor, 2D Tellurene (2D Te) is promising to possess a strong nonlinear optical response in the infrared region, which is rarely reported in 2D materials. Here, a giant nonlinear infrared response induced by large Berry curvature dipole (BCD) is demonstrated in the Weyl semiconductor 2D Te. Ultrahigh second-harmonic generation response is acquired from 2D Te with a large second-order nonlinear optical susceptibility (χ ), which is up to 23.
View Article and Find Full Text PDF2D ferromagnets have garnered considerable attention for their potential applications in spintronics, magnonics, and spin-orbitronics. Chromium tellurides (CrTe), in particular, have drawn interest due to their exceptional magnetic properties and diverse range of chemical stoichiometries, attributed to the phenomenon of chromium self-intercalation. To provide an in-depth understanding of this complex material class, this review first explains the origin of 2D magnetism using two well-known 2D ferromagnets, CrI and FeGeTe, and compares the structures of CrTe, CrTe, CrTe, and CrTe to clarify the self-intercalation phenomenon.
View Article and Find Full Text PDFSuperlattices-a periodic stacking of two-dimensional layers of two or more materials-provide a versatile scheme for engineering materials with tailored properties. Here we report an intrinsic heterodimensional superlattice consisting of alternating layers of two-dimensional vanadium disulfide (VS) and a one-dimensional vanadium sulfide (VS) chain array, deposited directly by chemical vapour deposition. This unique superlattice features an unconventional 1T stacking with a monoclinic unit cell of VS/VS layers identified by scanning transmission electron microscopy.
View Article and Find Full Text PDFTwo-dimensional (2D) materials with multiphase, multielement crystals such as transition metal chalcogenides (TMCs) (based on V, Cr, Mn, Fe, Cd, Pt and Pd) and transition metal phosphorous chalcogenides (TMPCs) offer a unique platform to explore novel physical phenomena. However, the synthesis of a single-phase/single-composition crystal of these 2D materials via chemical vapour deposition is still challenging. Here we unravel a competitive-chemical-reaction-based growth mechanism to manipulate the nucleation and growth rate.
View Article and Find Full Text PDFJ Am Chem Soc
November 2021
Reducing the lateral scale of two-dimensional (2D) materials to one-dimensional (1D) has attracted substantial research interest not only to achieve competitive electronic applications but also for the exploration of fundamental physical properties. Controllable synthesis of high-quality 1D nanoribbons (NRs) is thus highly desirable and essential for further study. Here, we report the implementation of supervised machine learning (ML) for the chemical vapor deposition (CVD) synthesis of high-quality quasi-1D few-layered WTe NRs.
View Article and Find Full Text PDFControl over cell growth by mobile regulators underlies much of eukaryotic morphogenesis. In plant roots, cell division and elongation are separated into distinct longitudinal zones and both division and elongation are influenced by the growth regulatory hormone gibberellin (GA). Previously, a multicellular mathematical model predicted a GA maximum at the border of the meristematic and elongation zones.
View Article and Find Full Text PDFKnowing the correlation of reaction parameters in the preparation process of carbon dots (CDs) is essential for optimizing the synthesis strategy, exploring exotic properties, and exploiting potential applications. However, the integrated screening experimental data on the synthesis of CDs are huge and noisy. Machine learning (ML) has recently been successfully used for the screening of high-performance materials.
View Article and Find Full Text PDFA carbon microtube aerogel (CMA) with hydrophobicity, strong adsorption capacity, and superb recyclability was obtained by a feasible approach with economical raw material, such as kapok fiber. The CMA possesses a great adsorption capacity of 78-348 times its weight. Attributed to its outstanding thermal stability and excellent mechanical properties, the CMA can be used for many cycles of distillation, squeezing, and combustion without degradation, which suggests a potential practical application in oil-water separation.
View Article and Find Full Text PDFPtSe, a layered two-dimensional transition-metal dichalcogenide (TMD), has drawn intensive attention owing to its layer-dependent band structure, high air stability, and spin-layer locking effect which can be used in various applications for next-generation optoelectronic and electronic devices or catalysis applications. However, synthesis of PtSe is highly challenging due to the low chemical reactivity of Pt sources. Here, we report the chemical vapor deposition of monolayer PtSe single crystals on MoSe.
View Article and Find Full Text PDFAlloying 2D transition metal dichalcogenides has opened up new opportunities for bandgap engineering and phase control. Developing a simple and scalable synthetic route is therefore essential to explore the full potential of these alloys with tunable optical and electrical properties. Here, the direct synthesis of monolayer WTe S alloys via one-step chemical vapor deposition (CVD) is demonstrated.
View Article and Find Full Text PDFThe phytohormone gibberellin (GA) is a small, mobile signaling molecule that plays a key role in seed germination, cellular elongation, and developmental transitions in plants. Gibberellin Perception Sensor 1 (GPS1) is the first Förster resonance energy transfer (FRET)-based biosensor that allows monitoring of cellular GA levels in vivo. By measuring a fluorescence emission ratio of nuclear localized-GPS1 (nlsGPS1), spatiotemporal mapping of endogenously and exogenously supplied GA gradients in different tissue types is feasible at a cellular scale.
View Article and Find Full Text PDFBMC Neurosci
September 2018
Background: Cys-loop receptors play important roles in fast neuronal signal transmission. Functional receptors are pentamers, with each subunit having an extracellular, transmembrane (TM) and intracellular domain. Each TM domain contains 4 α-helices (M1-M4) joined by loops of varying lengths.
View Article and Find Full Text PDFThe extracellular domains (ECDs) of Cys-loop receptors contain many aromatic amino acids, but only relatively few have been well studied. Here we explore the roles of Tyr and Trp residues in the ECD of the glycine receptor and show that four such residues that have not been previously studied (Y24, Y58, W170, and Y197) contribute significantly to the function of the protein. The residues were studied by creating mutant receptors, characterizing them using two-electrode voltage clamp in Xenopus oocytes, and interpreting changes in receptor parameters using structural information about the open and closed states of the receptor.
View Article and Find Full Text PDFGlycine receptors (GlyRs) are Cys-loop receptors that mediate fast synaptic inhibition in the brain stem and spinal cord. They are involved in the generation of motor rhythm, reflex circuit coordination, and sensory signal processing and therefore represent targets for therapeutic interventions. The extracellular domains (ECDs) of Cys-loop receptors typically contain many aromatic amino acids, but only those in the receptor binding pocket have been extensively studied.
View Article and Find Full Text PDFCompared with 2D S-based and Se-based transition metal dichalcogenides (TMDs), Te-based TMDs display much better electrical conductivities, which will be beneficial to enhance the capacitances in supercapacitors. However, to date, the reports about the applications of Te-based TMDs in supercapacitors are quite rare. Herein, the first supercapacitor example of the Te-based TMD is reported: the type-II Weyl semimetal 1Td WTe .
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
August 2016
We report a simple "one-pot" solvothermal preparation of silver nanoparticles (Ag NPs) decorated mesoporous titania (TiO2) microspheres as an effective antibacterial agent. TBOT as Ti source was hydrolyzed and crystallized in media composed of acetic acid and ethanol, in which esterification catalyzed by TBOT occurred for in-situ "controlled water release". AgNO3 as Ag source was reduced by ethanol to form Ag NPs embedded in the TiO2 microspheres.
View Article and Find Full Text PDFThe gelation of alginate in aqueous solution was studied as a function of Ca(2+) concentration. At each given concentration of alginate, a critical gel concentration [Formula: see text] , was successfully determined for the first time using the Winter-Chambon criterion. The critical gel concentration [Formula: see text] was found to increase linearly with alginate concentration.
View Article and Find Full Text PDF