Background: Commensal bacteria like Neisseria meningitidis sometimes cause serious disease. However, genomic comparison of hyperinvasive and apathogenic lineages did not reveal unambiguous hints towards indispensable virulence factors. Here, in a systems biological approach we compared gene expression of the invasive strain MC58 and the carriage strain α522 under different ex vivo conditions mimicking commensal and virulence compartments to assess the strain-specific impact of gene regulation on meningococcal virulence.
View Article and Find Full Text PDFA longstanding question in infection biology addresses the genetic basis for invasive behavior in commensal pathogens. A prime example for such a pathogen is Neisseria meningitidis. On the one hand it is a harmless commensal bacterium exquisitely adapted to humans, and on the other hand it sometimes behaves like a ferocious pathogen causing potentially lethal disease such as sepsis and acute bacterial meningitis.
View Article and Find Full Text PDFCRISPR interference confers adaptive, sequence-based immunity against viruses and plasmids and is specified by CRISPR RNAs (crRNAs) that are transcribed and processed from spacer-repeat units. Pre-crRNA processing is essential for CRISPR interference in all systems studied thus far. Here, our studies of crRNA biogenesis and CRISPR interference in naturally competent Neisseria spp.
View Article and Find Full Text PDF