Recent observations and climate change projections indicate that changes in rainfall energy, intensity, duration, and frequency, which determine the erosive power of rainfall, will amplify erosion rates around the world. However, the magnitude and scope of these future changes in erosive power of rainfall remain largely unknown, particularly at finer-resolutions and local scales. Due to a lack of available projected future sub-hourly climate data, previous studies relied on aggregates (hourly, daily) rainfall data.
View Article and Find Full Text PDFClimate change impacts on precipitation characteristics will alter the hydrologic characteristics, such as peak flows, time to peak, and erosion potential of watersheds. However, many of the currently available climate change datasets are provided at temporal and spatial resolutions that are inadequate to quantify projected changes in hydrologic characteristics of a watershed. Therefore, it is critical to temporally disaggregate coarse-resolution precipitation data to finer resolutions for studies sensitive to precipitation characteristics.
View Article and Find Full Text PDF