Unlabelled: Embolism, hyperglycemia, high intraocular pressure-induced increased reactive oxygen species (ROS) production, and microglial activation result in endothelial/retinal ganglion cell death. Here, we conducted in vitro and in vivo ischemia/reperfusion (I/R) efficacy studies of a hybrid antioxidant-nitric oxide donor small molecule, to assess its therapeutic potential for ocular stroke.
Methods: To induce I/R injury and inflammation, we subjected R28 and primary microglial cells to oxygen glucose deprivation (OGD) for 6 h in vitro or treated these cells with a cocktail of TNF-α, IL-1β and IFN-γ for 1 h, followed by the addition of (10 µM).
GADD45a is a gene we previously reported as a mediator of responses to acute lung injury. GADD45a-/- mice express decreased Akt and increased Akt ubiquitination due to the reduced expression of UCHL1 (ubiquitin c-terminal hydrolase L1), a deubiquitinating enzyme, while GADD45a-/- mice have increased their susceptibility to radiation-induced lung injury (RILI). Separately, we have reported a role for sphingolipids in RILI, evidenced by the increased RILI susceptibility of SphK1-/- (sphingosine kinase 1) mice.
View Article and Find Full Text PDFMesenchymal stem cell (MSCs)-derived extracellular vesicles (EVs) are emerging therapeutic tools. Hypoxic pre-conditioning (HPC) of MSCs altered the production of microRNAs (miRNAs) in EVs, and enhanced the cytoprotective, anti-inflammatory, and neuroprotective properties of their derivative EVs in retinal cells. EV miRNAs were identified as the primary contributors of these EV functions.
View Article and Find Full Text PDFBackground: Optic neuritis (ON) is frequently encountered in multiple sclerosis, neuromyelitis optica spectrum disorder, anti-myelin oligodendrocyte glycoprotein associated disease, and other systemic autoimmune disorders. The hallmarks are an abnormal optic nerve and inflammatory demyelination; episodes of optic neuritis tend to be recurrent, and particularly for neuromyelitis optica spectrum disorder, may result in permanent vision loss.
Main Body: Mesenchymal stem cell (MSC) therapy is a promising approach that results in remyelination, neuroprotection of axons, and has demonstrated success in clinical studies in other neuro-degenerative diseases and in animal models of ON.
In an attempt to screen antagonistic microorganisms from marine environment for the management of bacterial pathogens in aquaculture, an isolate of actinomycete MCCB 110 was segregated based on its comparatively higher inhibitory property on Vibrio harveyi (MCCB 111) and profound luminescent inhibition. Based on the culture characteristics, cell wall fatty acid profile and the nucleotide sequence of the 16S rRNA gene (1495 bp), the isolate was identified as Nocardiopsis alba. Solvent extraction of the fermentation broth followed by TLC and HPLC analyses resulted in the isolation of a major fraction active against luminescent Vibrio harveyi.
View Article and Find Full Text PDFCell replacement therapy using mesenchymal (MSC) and other stem cells has been evaluated for diabetic retinopathy and glaucoma. This approach has significant limitations, including few cells integrated, aberrant growth, and surgical complications. Mesenchymal Stem Cell Exosomes/Extracellular Vesicles (MSC EVs), which include exosomes and microvesicles, are an emerging alternative, promoting immunomodulation, repair, and regeneration by mediating MSC's paracrine effects.
View Article and Find Full Text PDFRetinal ischemia is a major cause of vision loss and a common underlying mechanism associated with diseases, such as diabetic retinopathy and central retinal artery occlusion. We have previously demonstrated the robust neuroprotection in retina induced by post-conditioning (post-C), a brief period of ischemia, 24 h, following a prolonged and damaging initial ischemia. The mechanisms underlying post-C-mediated retinal protection are largely uncharacterized.
View Article and Find Full Text PDFShrimp farming constitutes an important source of revenue and employment in many developing countries. However, the shrimp industry has always been plagued with infectious diseases having varied aetiologies. Dominated by non - specific immune mechanism, preventive health care strategy is the most appropriate approach to protect the crop.
View Article and Find Full Text PDFRetinal ischemia is a major cause of vision loss and impairment and a common underlying mechanism associated with diseases such as glaucoma, diabetic retinopathy, and central retinal artery occlusion. The regenerative capacity of the diseased human retina is limited. Our previous studies have shown the neuroprotective effects of intravitreal injection of mesenchymal stem cells (MSC) and MSC-conditioned medium in retinal ischemia in rats.
View Article and Find Full Text PDFAcute lung injury (ALI) is characterized by endothelial barrier disruption resulting in increased vascular permeability. As focal adhesion kinase (FAK), a non-receptor protein tyrosine kinase, is involved in endothelial cell (EC) barrier regulation, we hypothesized that FAK inhibition could attenuate agonist-induced EC barrier disruption relevant to ALI. Human lung EC were pretreated with one of three pharmacologic FAK inhibitors, PF-573,228 (PF-228, 10 μM), PF-562,271 (PF-271, 5 μM) or NVP-TAE226 (TAE226, 5 μM) for 30 min prior to treatment with thrombin (1 U/ml, 30 min).
View Article and Find Full Text PDFPurpose: The pathophysiology of retinal ischemia involves mechanisms including inflammation and apoptosis. Ischemic post-conditioning (Post-C), a brief non-lethal ischemia, induces a long-term ischemic tolerance, but the mechanisms of ischemic post-conditioning in the retina have only been described on a limited basis. Accordingly, we conducted this study to determine the molecular events in retinal ischemic post-conditioning and to identify targets for therapeutic strategies for retinal ischemia.
View Article and Find Full Text PDFWe have demonstrated that simvastatin and sphingosine 1-phosphate (S1P) both attenuate increased vascular permeability in preclinical models of acute respiratory distress syndrome. However, the underlying mechanisms remain unclear. As Krüppel-like factor 2 (KLF2) serves as a critical regulator for cellular stress response in endothelial cells (EC), we hypothesized that simvastatin enhances endothelial barrier function via increasing expression of the barrier-promoting S1P receptor, , via a KLF2-dependent mechanism.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
August 2017
Purpose: Ischemia-associated retinal degeneration is one of the leading causes of vision loss, and to date, there are no effective treatment options. We hypothesized that delayed injection of bone-marrow stem cells (BMSCs) 24 h after the onset of ischemia could effectively rescue ischemic retina from its consequences, including apoptosis, inflammation, and increased vascular permeability, thereby preventing retinal cell loss.
Methods: Retinal ischemia was induced in adult Wistar rats by increasing intraocular pressure (IOP) to 130-135 mmHg for 55 min.
Purpose: We have previously demonstrated the protective effect of bone marrow stem cell (BMSC)-conditioned medium in retinal ischemic injury. We hypothesized here that hypoxic preconditioning of stem cells significantly enhances the neuroprotective effect of the conditioned medium and thereby augments the protective effect in ischemic retina.
Methods: Rats were subjected to retinal ischemia by increasing intraocular pressure to 130 to 135 mm Hg for 55 minutes.
Radiotherapy as a primary treatment for thoracic malignancies induces deleterious effects, such as acute or subacute radiation-induced lung injury (RILI). Although the molecular etiology of RILI is controversial and likely multifactorial, a potentially important cellular target is the lung endothelial cytoskeleton that regulates paracellular gap formation and the influx of macromolecules and fluid to the alveolar space. Here we investigate the central role of a key endothelial cytoskeletal regulatory protein, the nonmuscle isoform of myosin light chain kinase (nmMLCK), in an established murine RILI model.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
December 2015
We previously reported protective effects of GADD45a (growth arrest and DNA damage-inducible gene 45 alpha) in murine ventilator-induced lung injury (VILI) via effects on Akt-mediated endothelial cell signaling. In the present study we investigated the role of GADD45a in separate murine models of radiation- and bleomycin-induced lung injury. Initial studies of wild-type mice subjected to single-dose thoracic radiation (10 Gy) confirmed a significant increase in lung GADD45a expression within 24 h and persistent at 6 wk.
View Article and Find Full Text PDFIntroduction: Idiopathic pulmonary fibrosis (IPF) is characterised by accumulation of fibroblasts and myofibroblasts and deposition of extracellular matrix proteins. Sphingosine-1-phosphate (S1P) signalling plays a critical role in pulmonary fibrosis.
Methods: S1P lyase (S1PL) expression in peripheral blood mononuclear cells (PBMCs) was correlated with pulmonary functions and overall survival; used a murine model to check the role of S1PL on the fibrogenesis and a cell culture system to study the effect of S1PL expression on transforming growth factor (TGF)-β- and S1P-induced fibroblast differentiation.
Rationale: Lysocardiolipin acyltransferase (LYCAT), a cardiolipin-remodeling enzyme regulating the 18:2 linoleic acid pattern of mammalian mitochondrial cardiolipin, is necessary for maintaining normal mitochondrial function and vascular development. We hypothesized that modulation of LYCAT expression in lung epithelium regulates development of pulmonary fibrosis.
Objectives: To define a role for LYCAT in human and murine models of pulmonary fibrosis.
Microvascular injury and increased vascular leakage are prominent features of radiation-induced lung injury (RILI), and often follow cancer-associated thoracic irradiation. Our previous studies demonstrated that polymorphisms in the gene (MIF) encoding macrophage migratory inhibition factor (MIF), a multifunctional pleiotropic cytokine, confer susceptibility to acute inflammatory lung injury and increased vascular permeability, particularly in senescent mice. In this study, we exposed wild-type and genetically engineered mif(-/-) mice to 20 Gy single-fraction thoracic radiation to investigate the age-related role of MIF in murine RILI (mice were aged 8 wk, 8 mo, or 16 mo).
View Article and Find Full Text PDFAcute lung injury (ALI) attributable to sepsis or mechanical ventilation and subacute lung injury because of ionizing radiation (RILI) share profound increases in vascular permeability as a key element and a common pathway driving increased morbidity and mortality. Unfortunately, despite advances in the understanding of lung pathophysiology, specific therapies do not yet exist for the treatment of ALI or RILI, or for the alleviation of unremitting pulmonary leakage, which serves as a defining feature of the illness. A critical need exists for new mechanistic insights that can lead to novel strategies, biomarkers, and therapies to reduce lung injury.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease, wherein transforming growth factor β (TGF-β) and sphingosine-1-phosphate (S1P) contribute to the pathogenesis of fibrosis. However, the in vivo contribution of sphingosine kinase (SphK) in fibrotic processes has not been documented. Microarray analysis of blood mononuclear cells from patients with IPF and SphK1- or SphK2-knockdown mice and SphK inhibitor were used to assess the role of SphKs in fibrogenesis.
View Article and Find Full Text PDFBackground: Exposure to particulate matter (PM) is a significant risk factor for increased cardiopulmonary morbidity and mortality. The mechanism of PM-mediated pathophysiology remains unknown. However, PM is proinflammatory to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation.
View Article and Find Full Text PDFThe enforcement of sphingosine-1-phosphate (S1P) signaling network protects from radiation-induced pneumonitis. We now demonstrate that, in contrast to early postirradiation period, late postirradiation sphingosine kinase-1 (SphK1) and sphingoid base-1-phosphates are associated with radiation-induced pulmonary fibrosis (RIF). Using the mouse model, we demonstrate that RIF is characterized by a marked upregulation of S1P and dihydrosphingosine-1-phosphate (DHS1P) levels in the lung tissue and in circulation accompanied by increased lung SphK1 expression and activity.
View Article and Find Full Text PDFExposure to particulate air pollution is associated with increased cardiopulmonary morbidity and mortality, although the pathogenic mechanisms are poorly understood. We previously demonstrated that particulate matter (PM) exposure triggers massive oxidative stress in vascular endothelial cells (ECs), resulting in the loss of EC integrity and lung vascular hyperpermeability. We investigated the protective role of hydrogen sulfide (H(2)S), an endogenous gaseous molecule present in the circulation, on PM-induced human lung EC barrier disruption and pulmonary inflammation.
View Article and Find Full Text PDFClinically significant radiation-induced lung injury (RILI) is a common toxicity in patients administered thoracic radiotherapy. Although the molecular etiology is poorly understood, we previously characterized a murine model of RILI in which alterations in lung barrier integrity surfaced as a potentially important pathobiological event and genome-wide lung gene mRNA levels identified dysregulation of sphingolipid metabolic pathway genes. We hypothesized that sphingolipid signaling components serve as modulators and novel therapeutic targets of RILI.
View Article and Find Full Text PDF