The use of advanced brittle composites in engineering systems has necessitated robotic rotary ultrasonic machining to attain high precision with minimal machining defects such as delamination, burrs, and cracks. Longitudinal-torsional coupled (LTC) vibrations are created by introducing helical slots to a horn's profile to enhance the quality of ultrasonic machining. In this investigative research, modified ultrasonic horns were designed for a giant magnetostrictive transducer by generating helical slots in catenoidal and cubic polynomial profiles to attain a high amplitude ratio (TA/LA) and low stress concentrations.
View Article and Find Full Text PDFIn the field of quality control, the critical challenge of analyzing microdefects in steel filament holds significant importance. This is particularly vital, as steel filaments serve as reinforced fibers in the use and applications within various component manufacturing industries. This paper addresses the crucial requirement of identifying and investigating microdefects in steel filaments.
View Article and Find Full Text PDFThis paper presents a novel design and control strategies for a parallel two degrees-of-freedom (DOF) flexure-based micropositioning stage for large-range manipulation applications. The motion-guiding beam utilizes a compound hybrid compliant prismatic joint (CHCPJ) composed of corrugated and leaf flexures, ensuring increased compliance in primary directions and optimal stress distribution with minimal longitudinal length. Additionally, a four-beam parallelogram compliant prismatic joint (4BPCPJ) is used to improve the motion decoupling performance by increasing the off-axis to primary stiffness ratio.
View Article and Find Full Text PDFIn the current industrial revolution, advanced technologies and methods can be effectively utilized for the detection and verification of defects in high-speed steel filament production. This paper introduces an innovative methodology for the precise detection and verification of micro surface defects found in steel filaments through the application of the Eddy current principle. Permanent magnets are employed to generate a magnetic field with a high frequency surrounding a coil of sensors positioned at the filament's output end.
View Article and Find Full Text PDFWith their high specific stiffness, corrosion resistance and other characteristics, especially their outstanding performance in product weight loss, fiber-reinforced resin matrix composites are widely used in the aviation, shipbuilding and automotive fields. The difficulties in minimizing defects are an important factor in the high cost of composite material component fabrication. Fiber steering is one of the typical means of producing composite parts with increased strength or stiffness.
View Article and Find Full Text PDFIn recent years, robotic minimally invasive surgery has transformed many types of surgical procedures and improved their outcomes. Implementing effective haptic feedback into a teleoperated robotic surgical system presents a significant challenge due to the trade-off between transparency and stability caused by system communication time delays. In this paper, these time delays are mitigated by implementing an environment estimation and force prediction methodology into an experimental robotic minimally invasive surgical system.
View Article and Find Full Text PDFThis study focuses on the role of the damage evolution when estimating the failure behavior of AISI 1045 steel for sensing and measuring metal cutting parameters. A total of five Lagrangian explicit models are established to investigate the effect of applying damage evolution techniques. The Johnson-Cook failure model is introduced once to fully represent damage behavior, i.
View Article and Find Full Text PDFWith robotic-assisted minimally invasive surgery (RAMIS), patients and surgeons benefit from a reduced incision size and dexterous instruments. However, current robotic surgery platforms lack haptic feedback, which is an essential element of safe operation. Moreover, teleportation control challenges make complex surgical tasks like suturing more time-consuming than those that use manual tools.
View Article and Find Full Text PDFThe current study presents three calibration approaches for the hole-drilling method (HDM). A total of 72 finite element models and 144 simulations were established to calibrate the measurements of the strain sensors. The first approach assumed the stresses acted on the boundaries of the drilled hole and thus analyzed the surrounding displacements field.
View Article and Find Full Text PDFSolid-State LiDAR (SSL) takes an increasing share of the LiDAR market. Compared with traditional spinning LiDAR, SSLs are more compact, energy-efficient and cost-effective. Generally, the current study of SSL mapping is limited to adapting existing SLAM algorithms to an SSL sensor.
View Article and Find Full Text PDFThe mechanical behaviour of adherent cells when subjected to the local indentation can be modelled via various approaches. Specifically, the tensegrity structure has been widely used in describing the organization of discrete intracellular cytoskeletal components, including microtubules (MTs) and microfilaments. The establishment of a tensegrity model for adherent cells has generally been done empirically, without a mathematically demonstrated methodology.
View Article and Find Full Text PDFComput Assist Surg (Abingdon)
October 2019
Hyperthermia treatments require precise control of thermal energy to form the coagulation zones which sufficiently cover the tumor without affecting surrounding healthy tissues. This has led modeling of soft tissue thermal damage to become important in hyperthermia treatments to completely eradicate tumors without inducing tissue damage to surrounding healthy tissues. This paper presents a methodology based on GPU acceleration for modeling and analysis of bio-heat conduction and associated thermal-induced tissue damage for prediction of soft tissue damage in thermal ablation, which is a typical hyperthermia therapy.
View Article and Find Full Text PDFCompliant bridge mechanisms are frequently utilized to scale micrometer order motions of piezoelectric actuators to levels suitable for desired applications. Analytical equations have previously been specifically developed for two configurations of bridge mechanisms: parallel and rhombic type. Based on elastic beam theory, a kinematic analysis of compliant bridge mechanisms in general configurations is presented.
View Article and Find Full Text PDFThis paper presents a new method for real-time modelling soft tissue deformation. It improves the traditional mass-spring model with conical springs to deal with nonlinear mechanical behaviours of soft tissues. A conical spring model is developed to predict soft tissue deformation with reference to deformation patterns.
View Article and Find Full Text PDFThis article presents a simple weighing method for spherical cells to avoid the high cost of correlated devices in traditional cell-weighing methods. In this method, the constant falling speeds of the spherical objects in liquid are derived to estimate their masses online. Using this method, the detected density of one type of microbead is highly in accordance with the known value.
View Article and Find Full Text PDFUltrathin gold nanowires are mechanically flexible yet robust, which are novel building blocks with potential applications in future wearable optoelectronic devices. Here we report an efficient, low-cost fabrication strategy to construct a highly sensitive, flexible pressure sensor by sandwiching ultrathin gold nanowire-impregnated tissue paper between two thin polydimethylsiloxane sheets. The entire device fabrication process is scalable, enabling facile large-area integration and patterning for mapping spatial pressure distribution.
View Article and Find Full Text PDFThis paper presents a vision-based force measurement method using an artificial neural network model. The proposed model is used for measuring the applied load to a spherical biological cell during micromanipulation process. The devised vision-based method is most useful when force measurement capability is required, but it is very challenging or even infeasible to use a force sensor.
View Article and Find Full Text PDFMinim Invasive Ther Allied Technol
June 2014
Background: Robotic assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic procedures but also restore the surgeon's hand-eye coordination and improve the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Several research efforts have already attempted to restore this feature and study the effects of force feedback in robotic systems.
View Article and Find Full Text PDFBackground: Robotic-assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic instruments but also have other important advantages, including restoring the surgeon's hand-eye coordination and improving the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Various solutions for restoring this feature have been proposed.
View Article and Find Full Text PDFArtif Intell Med
November 2009
Objective: Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues.
View Article and Find Full Text PDFThis paper describes the process of developing a microgripper that is capable of high precision and fidelity manipulation of micro-objects. The design adopts the concept of flexure-based hinges on its joints to provide the rotational motion, thus eliminating the inherent nonlinearities associated with the application of conventional rigid hinges. A combination of two modeling techniques, namely, pseudorigid body model and finite element analysis was utilized to expedite the prototyping procedure, which leads to the establishment of a high performance mechanism.
View Article and Find Full Text PDFIEEE Trans Neural Netw
February 2009
This paper presents a robust neural network motion tracking control methodology for piezoelectric actuation systems employed in micro/nanomanipulation. This control methodology is proposed for tracking of desired motion trajectories in the presence of unknown system parameters, nonlinearities including the hysteresis effect and external disturbances in the control systems. In this paper, the related control issues are investigated, and a control methodology is established including the neural networks and a sliding control scheme.
View Article and Find Full Text PDFThis work presents a new approach with details on the integrated platform and hardware architecture for nanorobots application in epidemic control, which should enable real time in vivo prognosis of biohazard infection. The recent developments in the field of nanoelectronics, with transducers progressively shrinking down to smaller sizes through nanotechnology and carbon nanotubes, are expected to result in innovative biomedical instrumentation possibilities, with new therapies and efficient diagnosis methodologies. The use of integrated systems, smart biosensors, and programmable nanodevices are advancing nanoelectronics, enabling the progressive research and development of molecular machines.
View Article and Find Full Text PDFThis work presents an innovative nanorobot architecture based on nanobioelectronics for diabetes. The progressive development toward the therapeutic use of nanorobots should be observed as the natural result from some ongoing and future achievements in biomedical instrumentation, wireless communication, remote power transmission, nanoelectronics, new materials engineering, chemistry, proteomics, and photonics. To illustrate the nanorobot integrated circuit architecture and layout described here, a computational approach with the application of medical nanorobotics for diabetes is simulated using clinical data.
View Article and Find Full Text PDFThis work describes an innovative medical nanorobot architecture based on important discoveries in nanotechnology, integrated circuit patents, and some publications, directly or indirectly related to one of the most challenging new fields of science: molecular machines. Thus, the architecture described in this paper reflects, and is supported by, some remarkable recent achievements and patents in nanoelectronics, wireless communication and power transmission techniques, nanotubes, lithography, biomedical instrumentation, genetics, and photonics. We also describe how medicine can benefit from the joint development of nanodevices which are derived, and which integrate techniques, from artificial intelligence, nanotechnology, and embedded smart sensors.
View Article and Find Full Text PDF