Publications by authors named "Bijan Abbasi-Arand"

In this paper, a novel wideband antenna with a simple structure and low profile based on spoof surface plasmon polaritons (SSPPs) is proposed. The structure consists of periodically modulated corrugated metal strips as transmission lines, a CPW feed, and a ground metal plate as an antenna reflector. The SSPP transmission line is used to convert quasi-TEM to SSPP mode and achieve optimal impedance matching.

View Article and Find Full Text PDF

In this paper, a semi-analytical approach is introduced to analyze a spoof plasmonic structure, with an arbitrary geometry. This approach is based on a combination of techniques that employ a full-wave simulator and the Bloch theorem. By applying periodic boundary conditions, the real and imaginary parts of the equation obtained from the equivalent network have been calculated.

View Article and Find Full Text PDF

In this paper, a novel wideband end-fire antenna, based on a spoof surface plasmon polaritons (SSPP) transmission line, is proposed. Periodically modulated corrugated metal strips are used as a transmission line for quasi-TEM conversion in the microstrip line to the state of SSPP and the best impedance matching. Due to the strong confinement of the field in the SSPP waveguide and its high transmission performance, it has been used as a transmission line.

View Article and Find Full Text PDF

Inhomogeneous metasurfaces as a periodic array of supercells in which each supercell consists of different types of particles are good candidates for increasing the bandwidth in many applications. However, the presence of a substrate is often apparent in many cases; therefore, analyzing substrated inhomogeneous metasurfaces is highly attractive and important. In this paper, an efficient analysis of the plane-wave scattering by inhomogeneous substrated metasurfaces is presented using interaction constant method (ICM).

View Article and Find Full Text PDF

The analysis and synthesis of metasurfaces are important because of their emerging applications in a broad range of the operational wavelengths from microwaves to the visible light spectrum. Moreover, in many applications, like optical nanoantennas, absorbers, solar cells, and sensing, the presence of a substrate is apparent. Therefore, understanding the effects of substrates upon the metasurfaces is important, as the substrates typically affect the resonance behaviors of particles, as well as the interactions between them.

View Article and Find Full Text PDF

The polarizability tensors of a particle are its characteristic parameters, which once obtained, can be applied as equivalent representations of the particle in any problems involving plane wave illuminations. In this paper, the generalized Kerker's conditions for unidirectional scattering are derived, in the case of normal and oblique incidence, in terms of the polarizability tensors of any arbitrary nanostructures in homogeneous media and located on dielectric substrates. In order to present structures that corroborate the conditions derived from such polarizabilities, first, the effect of constituent material on the frequency response of the nanoparticle is investigated.

View Article and Find Full Text PDF

Detection of sea-surface small floating targets in maritime high-resolution surveillance radar has been an active area of research in recent years. In this paper, we propose a new detector based on a complex-valued independent component analysis (cICA) algorithm proposed by Geng-Shen Fu et al. called complex entropy rate bound minimization (CERBM), to look for targets in polarimetric radars.

View Article and Find Full Text PDF